
SYS-CON
PUBLICATIONS

E-Java
Java & XML & E-Commerce

by Ajit Sagar pg.26

Straight Talking
Happy Birthday!

by Alan Williamson pg.24

Product Review
Sybase PowerJ 3.0

by Sean Rhody pg.56

Widget Factory
Text Controls by Swing

by Jim Crafton pg.36

What Will
Come
by Richard Soley
pg.64

Anonymous
Deployment
vs Portability
by Bruce Scott
pg.32

JDJ Special Feature: CORBA Object Browser P. G. Sarang
Versatile DII lets you discover and use a CORBA Mohan Rajapopalan
object at runtime without compiling stubs 8

JDJ Feature: JAVA & COLDFUSION Ajit Sagar
Two competing, yet complementary e-business technologies 18

Multiplatform Application Design with Java Jim Wright
An architecture for multiplatform development 46

A New Java Startup: PointBase, Inc. Scott Davison
Oracle cofounder Bruce Scott’s new Java company 50

Case Study: Corporation Benefits from Ethan Henry

JProbe During App Development Josephine Coombe
KL Group tools eliminate memory leak and improve performance 60

BEA WebLogic Server & EJB Dean Jacobs
Java and EJB no longer pose limitations 66

Case Study: TRIP.com’s Online Solution Scott Davison
WebLogic-based online travel tool saves travelers time and money 72

EJB Home: Enterprise JavaBeans Jason Westra
Does EJB really fit into enterprise computing? 74

A Windows-Specific Java Utility Class Pat Paternostro
A little help from JNI help to answer many questions 82

From the Editor
The XML Mambo
by Sean Rhody pg.5

Clustering Enterprise
JavaBeans
with BEA
WebLogic
Server
pg.66

Volume:4 Issue:6, June 1999

The World’s Leading Java Resource

A Sign of
the Times
by George Paolini
pg.7

EXPANDEDEXPANDED EDITIONEDITIONEXPANDED EDITION

Service Manager

Application Core

Service n

Service
Implementer
Service n,
Platform x

Service
Implementer
Service 2,

Platform Neutral

Service
Implementer
Service 1,
Platform x

Service
Implementer
Service 1,

Platform Neutral
(not loaded)

Service 2Service 1

The World’s L
eading

Java Resource

100,000 copies

in print

TM

B
EA

W

EB
LOGIC SER

V
ER

4.0

BONUSFREECOLLECTOR’SCD

BONUSFREECOLLECTOR’SCD

Java Client Browser Client
(HTML only)

HTTP

ServletServletJava Client

RMI

2 JUNE 1999

BEA WebLogic

You will receive
BEA WebLogic’s

Collector’s CD with
this issue in the mail!

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

3JUNE 1999

ProtoView

See JDJ Special Offer at:
See JDJ Special Offer at:

http://www.sys-con.com/java/specialsoftheweek.html

4 JUNE 1999

Sun Microsystems

To get the hottest equipment,
you have to pay the price.

Lucky for you, it’s a small one.
Ultra 5 workstations,

now only $2,495

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

5JUNE 1999

Every so often I read something that makes me scratch my head and wonder.
Most recently this phenomenon occurred when I read an editorial concerning
Java and XML in a Web development magazine. The author wrote that he
thought the concept of XML was easy to understand in terms of its usefulness,
while he was puzzled over the reason for Enterprise JavaBeans. I sat back and
said to myself, Is it me, or do people who get into programming by designing
Web sites always get it backwards? Not to malign the author, who did a good job
of explaining both technologies, but I’ve been working with EJB for a year, and
it seems like a pretty clear concept to me. What I can’t seem to get is the impor-
tance of XML.

As I understand it, XML is a language used to provide meta data as well as
data – information about the structure and content of data in a format that any
XML-aware application can interpret meaningfully, in addition to the data itself.
For example, someone might write a definition of a recipe (the meta data, known
as Data Type Definition or DTD), and then other cooks could publish their
recipes using that definition in such a way that all pages or programs written to
work with one person’s recipes could work with another person’s recipes.

I get this. I can see where this can make the building of Web applications eas-
ier, although how much easier I’m not sure. With XML, we’ll probably be able to
add data type checking to pages, and do some other operations that we could-
n’t do on the pure content of HTML.

What I don’t see is how much this buys the industry. First of all, in order for
content to be useful to more than just a single company, a standard DTD needs
to be created. There are bodies out there in just about every major industry
defining these data types. But what if your needs require something different
from the standard? How do you reconcile your DTD with theirs? It can be done,
but why?

Second, I don’t see how much use this will be in programming; about all I can
see is field binding and some additional database features. Nice, but why is XML
the next killer app? It’s just a language like HTML, which was pretty useless in
and of itself until the graphic browsers were invented. The browser, the inter-
preter or user of HTML, was really the killer app.

Probably the big use for XML will be in e-commerce. This is a likely spot,
because e-commerce is all about the exchange of structured information, e.g.,
invoices, transactions, registrations and things like that. And it doesn’t seem
like a bad way to do things. By standardizing the language for describing the
data, it makes it easier for disparate applications, or even disparate companies,
to communicate.

I see XML as an enabler for future technology in the same way that the mouse
was an enabler. The mouse became a standard input device for just about every
computer. XML stands positioned to do the same for data on every computer.
But the real killer apps are the programs that will use XML. I don’t see XML as
changing the way I program, or the way you type in data on the screen.

Now as for EJB, I can see the purpose for that. But then, I got into Web devel-
opment from the programming side. So maybe I’ve got it backwards. Let me
know.

About the Author
Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a senior consultant with Computer
Sciences Corporation, where he specializes in application architecture – particularly distributed systems.
He can be reached by e-mail at sean@sys-con.com.

The XML Mambo

FROM THE EDITOR

Sean Rhody, Editor-in-Chief

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, David Gee, Michel Gerin,

Arthur van Hoff, Brian Maso, John Olson,
George Paolini, Kim Polese, Sean Rhody, Rick Ross,

Ajit Sagar, Richard Soley, Alan Williamson
Editor-in-Chief: Sean Rhody

Art Director: Jim Morgan
Executive Editor: M’lou Pinkham

Managing Editor: Brian Christensen
Assistant Editor: Nancy Valentine

Proofreader: Anne-Marie Babcock
Editorial Consultant: Scott Davison

Technical Editor: Bahadir Karuv
Product Review Editor: Ed Zebrowski

Industry News Editor. Alan Williamson
E-commerce Editor. Ajit Sagar

WRITERS IN THIS ISSUE
Josephine Coombe, Jim Crafton, Scott Davison,

Ethan Henry, Pat Paternostro, Mohan Rajagopalan,
Sean Rhody, Rick Ross, Ajit Sagar,

Poornachandra Sarang, Bruce Scott, Richard Soley,
Jason Westra, Alan Williamson, Jim Wright

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus airmail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Chief Financial Officer: Ignacio Arellano
Accounting Manager: Eli Horowitz
Circulation Manager. Mary Ann McBride

Advertising Account Manager: Robyn Forma
Advertising Assistant: Megan Ring

Graphic Designers: Robin Groves
Alex Botero

SYS-CON Radio Editor: Chad Sitler
Webmaster: Robert Diamond

Customer Service: Sian O’Gorman
Paula Horowitz
Ann Marie Milillo

Online Customer Service: Mitchell Low

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-7300 Fax: 914 735-6547

Subscribe@SYS-CON.com

JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is
published monthly (12 times a year) for $49.00 by SYS-CON

Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.
Application to mail at Periodicals Postage rates is pending at

Pearl River, NY 10965 and additional mailing offices.
POSTMASTER: Send address changes to:

JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,
39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved. No part of

this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact

reprint coordinator. SYS-CON Publications, Inc., reserves the right to revise,
republish and authorize its readers to use the articles submitted for publication.

Worldwide Distribution by
Curtis Circulation Company

739 River Road, New Milford NJ 07646-3048 Phone: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks
of Sun Microsystems, Inc., in the United States and other countries.

SYS-CON Publications, Inc., is independent of Sun Microsystems, Inc.
All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

6 JUNE 1999

Computer Associates

www.cai.com/ads/jasmine/dev

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

7JUNE 1999

One
Realm

One Realm is

offering JDJ

readers a FREE

trial version of

“I18n Expeditor”

to internationalize

your software

See JDJ
Special Offer at:

http://www.
sys-con.com/

java/
specialsofthe-

week.html

If you had to conjure an image that best serves as
a “sign of the times,” what might it be?

Perhaps a screen shot of a rare Partridge Family
album being auctioned off for an incredible sum on e-
Bay. Or how about a staged photo op of some of
those starched-white-shirt telco and cable guys shak-
ing hands in the latest billion-dollar megamerger.
This might be more likely: hip-looking X-gens tipping
their plastic champagne glasses to celebrate as their
IPO turns them into instant multimillionaires. All
good images, to be sure.

But a sign in a little toyshop in San Francisco says
it all for me. “See us at our new address: www.toydo-
main.com.” That toystore is just one of millions of
businesses that has figured it out. And with your
help, they’ve made the Web the definitive platform
for business infrastructure today.

It's not that every business is going to do some-
thing as radical as abandon its bricks and mortar
environment and move to cyberspace. But they’re
going to build their businesses with the Web as their
architecture. And they’re going to make it go with the
Java platform.

The reasons are very clear. In a global, hyper-
competitive market where agility and the ability to
react is key, the last thing any business executive
wants is to remain locked into an IT architecture.
Businesses are demanding the Web and the Java
platform as the way to extend their current infra-
structure, to unlock all that business logic that has
been hidden from public view for years and years by
arcane protocols and formats. And businesses are
demanding the Web and the Java platform as assur-
ance that they won’t be locked in again.

This, of course, is all good news to you. As part of
the Java community, you’ve been lauding the advan-
tages of writing in the Java language for years now. It
lowers development costs; it lowers deployment and
maintenance costs on heterogeneous networks. But
even more than that, you, as part of the Java com-
munity, have sought a technical platform based on
the free exchange of ideas and fair competition.

It’s hard for me to envision another technology
that delivers such a level playing field. Open inter-
faces result in choice. Choice spurs competition.
Competition is the mother of innovation.

Indeed, we are on the cusp of a new era – where
Java technology innovation is delivering real busi-
ness value and impacting the bottom line.

The Java platform was invented by Sun Microsys-
tems, but it truly is a product of open industry col-
laboration and cooperation. There is major intellec-
tual property invested in the Java platform not only
by Sun, but also by countless other companies and
independent developers. The more than 50 applica-
tion programming interfaces that define the Java
platform were built with the help of this community.
JavaBeans, Java Media Framework, Java Database
Connectivity, Enterprise JavaBeans – the list of tech-
nologies built in cooperation with the developer
community goes on and on.

The collaborative way in which the Java platform
has evolved has afforded us the honor of being able
to use the World Wide Web to harness the intellect
and creativity of the smartest people in the world –
people like you. That is how the Java platform has
become a technology of the highest quality in Inter-
net time.

The growth of the Java industry and your suc-
cess with the Java platform has been staggering. You
now number more than 1 million, and estimates say
that your numbers will triple by the year 2002. Col-
lectively you have shipped thousands of Java appli-
cations. Your work is innovative and groundbreaking.
And we at Sun Microsystems are privileged -- and,
quite frankly, proud -- to have played a role in this
success.

Our mantra has been to listen to you and deliver
your requirements. You required a platform that was
complete, stable, secure and fast. We delivered Java
2 – the first release of the Java platform that delivers
functional completeness, uncompromising stability,
bulletproof security and speed – beating the pants
off any platform previously released or available in
the marketplace.

You required easier access to source code and
fewer restrictions for using the Java platform…and
we announced a new licensing model – the Java Com-
munity Source Licensing program. This program
facilitates increased and more rapid innovation and
faster commercialization of products based on
source technology. Licensing the Java platform is as
easy as point-and-click. We have been pleased to wel-
come tens of thousands of new licensees into the
community of Java partners through this program.

We also announced the Java Community Process
initiative, which opens up the community of interest-
ed parties working to extend and develop the Java
platform to a larger circle. This initiative formalizes
the collaborative, industry-participative methodolo-
gy for developing the Java platform. And it engages
an independent auditing firm to ensure that the col-
laborative process for new Java platform develop-
ments is followed faithfully.

And we heard you loud and clear when you said
performance, performance, performance. This
spring, the Java HotSpot performance engine was
released. This engine delivers unprecedented perfor-
mance, breaking new ground in software design and
raising the bar by providing 100% faster performance
than the previous version of the Java platform.

Like you, we’ve done a lot of work on the Java
platform. But our work isn’t done yet.

We’re preparing for JavaOne, Sun’s worldwide
Java Developer conference – the largest developer
conference on the planet. There we’ll unveil Java 2
Enterprise Edition, which enables component-based
distributed applications to take full advantage of the
power of the Java platform.

These Java platform and Java technology
achievements – and those milestones we have yet to
achieve – all work toward a single objective: to equip
you with the tools you need to capitalize on oppor-
tunities in the new networked era. The Java platform
has changed the rules of the game. But your innova-
tion is what makes the Java platform a winner. The
success of the platform ultimately rests in your
hands.

About the Author
George Paolini is director of corporate marketing at JavaSoft, a
Sun Microsystems, Inc., business unit. A member of the Java
Developer’s Journal Editorial Board, he is responsible for
managing all public relations, advertising, field marketing
communications and developer support activities within JavaSoft.
George can be reached at george.paolini@SUN.com.

GUEST EDITORIAL

George Paolini, Director of Corporate Marketing, JavaSoft

A Sign of the Times

8 JUNE 1999

With the rapid growth of the Internet, distributed Web-enabled appli-
cations are becoming popular. One of the most commonly used archi-
tectures for development of such applications is CORBA, which provides
a platform, location and an implementation-language-neutral architec-
ture for the development of distributed applications. In addition, the
phenomenal interest in component technology has led to the develop-
ment of CORBA Beans. Such CORBA components and objects will soon
be available for use on the Web. When you encounter such a CORBA
object, you may wish to use its services by dynamically discovering its
properties (something similar to Introspect and Reflection in Java).
CORBA supports this.

What Is Dynamic Invocation?
CORBA allows you to discover an object’s properties dynamically

and use its services by invoking the public methods on the object at run-
time. This is known as Dynamic Invocation Interface (DII). It’s essential
for a CORBA object that allows the client to discover its properties at
runtime to publish its interface definition language (IDL) for the client to
look up. CORBA architecture provides for an Interface Repository (IR) in
which the publisher of an object publishes its IDL. Once the client
obtains a reference to an object, it can retrieve the IDL from this IR. The
IDL helps the client understand the public attributes and methods of the
discovered object. The client then invokes the methods on the object
using the DII mechanism.

The use of IR and DII not only benefits the client in discovering and
using the object, but also helps its publisher add new features to the
object anytime after its deployment. The client can then dynamically dis-
cover these new features and use them. The new interface definition is
published in the IR by the developer. The client now has access to all the
latest features provided by the application using the DII mechanism. DII
is the “dream come true” for developers since it allows them to modify
previously published CORBA objects without the need to recompile and
redistribute client-side stubs.

A practical example: you’re developing a CORBA application for set-

ting up an online store where customers visit, make some purchases and
pay for purchases with a check “snail-mailed” to your account. You’ll
supply a client-side application that interfaces with your server applica-
tion. The client application contains the compiled stubs required to use
your server application. At a later time you may wish to provide the facil-
ity of payment by credit card. Adding a new purchase method in the IDL
definition does this job. However, you’ll need to supply the new stubs to
all your clients. If you’d used the DII mechanism in the client application,

Versatile DII lets you
discover and use
a CORBA object

at runtime without
compiling stubs

CORBA Object
Browser
Object
Browser

by Poornachandra G. Sarang & Mohan Rajagopalan

JDJ FEATURE

9JUNE 1999

the client would be able to discover the newly
added method without the necessity of obtain-
ing the new stub.

Object Browser
To emphasize the practical usability of the

DII, we’ve developed a CORBA object browser
using Java and JFC classes. The browser

requests that the user enter a reference to an
existing CORBA object. Usually a CORBA
object registers itself with the CORBA Naming
Service using a unique name. We pass this
name to the object browser, which looks up the
Naming Service to resolve the reference to the
object. Once the browser obtains a reference, it
displays the IDL to the user. The user can now
select an operation from the displayed list and
invoke it. (A method is called an operation in
CORBA terminology and we use the terms
interchangeably in this article.) A method invo-
cation may require one or more parameters
and may return a result. The browser deter-
mines the types for the required parameters,
constructs the parameters of appropriate data
types, obtains values for each parameter from
the user and, on successful completion of the
method, returns the appropriate values to the
user. In CORBA each parameter may be of IN,
OUT or INOUT type. Since Java supports only
pass by value, it supports only IN type para-
meters, implying that the parameters to a Java
method are read-only. In CORBA the method
may return the value through OUT or INOUT
types of parameters. Our browser takes care of
all three types of parameters.

To help understand the complex DII inter-
face of CORBA, we’ll discuss the design of the
CORBA object browser. But first we’ll touch on
some aspects of locating the object on the Web
using the Naming and URL Naming Services of
Visigenic, the IOR (Interoperable Object Refer-
ence) and Interface Repository.

Locating Object: CORBA Naming
Service and Web Naming Service

Our object browser needs to locate the
object before trying to use its services. A
CORBA object publishes a reference to itself by
registering its name with the Naming Service.
This is done with the help of the bind or rebind
method, in which the object reference is tied to
its symbolic name. Before you use this method
you must start the Naming Service. On Visi-
genic ORB (we use this for our development)
you start the Naming Service using the follow-
ing command line, with the root name speci-
fied as ABCOM:

vbj -DORBservices=CosNaming -
DSVCnameroot=ABCOM –DJDKrenameBug
com.visigenic.vbroker.services.CosNaming.

Ext Factory ABCOM namingLog

If you use the Java 2 platform, you start the
Naming Service using the following command
line:

tnameserv [-ORBInitialPort <Port_Number>]

The default Port_number is 900.
The principal task of the Naming Service is

to keep track of the namespace, which is the
collection of object names bound to a Naming
Service. The namespace may contain a hierar-
chy of bindings extending over several
domains just like a file system on your disk. If

the namespace extends over several domains,
it’s called the Federated NameSpace. The bind-
ing is the logical association of the object ref-
erence to its symbolic name.

A client obtains a reference to the Naming
Service by calling the resolve_initial_refer-
ences() method of the ORB. Once the initial
context of the Naming Service is resolved, it
calls the resolve method on the NamingCon-
text to obtain a reference to the desired object.
The whole task of name resolution is transpar-
ent to the client.

Another way to publish your object is to con-
vert the object reference to a string and store it
in a file using ORB’s object_to_string method.
The method returns a stringified version of the
IOR, which contains information such as IIOP
version, Host, Port, etc., which helps to unique-
ly identify the object on the Web. The client
reads the IOR from the specified file (usually
with the extension .ior) at the given URL, and
obtains a reference to the object using the infor-
mation in the IOR. Visigenic requires that the
extension given to the IOR file must be .ior if you
wish to use Visigenic GateKeeper.

Visigenic provides the URL Naming Service
to locate an object using a URL rather than its
generic name. This provides for interoperabili-
ty among objects bound to ORBs on different
machines. The following code segment shows
you how to use Visigenic’s URL Naming Service
to locate an object running on a different ORB:

// create the resolver object
com.visigenic.vbroker.URLNaming.Resolver
URLresolver =
com.visigenic.vbroker.URLNaming.Resolver-
Helper.narrow(orb.resolve_initial_references
("URLNamingResolver"));

// locate object using resolver
obj = URLresolver.locate(http_location);

The URL Naming Service uses a Resolver
Object to locate the .ior file and resolve the ref-
erence to the remote object. In the above code
snippet we create a Resolver Object using the
ResolverHelper provided with the URL Naming
Service. The Resolver uses the locate method
to search the specified IOR at a given URL. If
the IOR file is found, it’s read and the reference
to the object running on the remote server is
returned to the caller.

The publisher must publish the IOR file on
a Web server so the client can locate it using
the URL Naming Service. If you’re using
Microsoft’s IIS (Internet Information Server),
you’ll put this file in the InetPub/www.root fold-
er or the folder defined for public access.

Interface Repository
The Interface Repository is used for storing

IDL definitions for various CORBA objects. The
IDL definition of a CORBA object forms its
skeleton, and the object implementation is
developed from this definition. The Interface
Repository is the online database that main-
tains a record of interfaces of all registered

10 JUNE 1999

objects. On a Visigenic ORB you start the Inter-
face Repository using the following command
line:

Prompt> irep IRname fileName

The IRname is the name assigned to the
Interface Repository, and fileName is the phys-
ical file used for storage. Once the IR is created,
you can add your object definitions using the
idl2ir utility:

Prompt> idl2ir file.idl

The IDL definition contained in file.idl is
now added to the IR. Each entry in the IR con-
tains a header describing the file name, time of
creation, user name and location of the file on
the machine. The IR stores information in sim-
ple text format. You can use a standard text edi-
tor to view this. A typical IR entry is shown
below.

/*
File : abcom.ir
Date : Sat Jan 30 06:58:40 GMT+00:00 1999
User : Administrator
Dir : C:\OBJECTBROWSER

*/
module bank {

interface TermDeposit;
interface TermDeposit {

attribute float Interest;
float Compute(

in float Principal,
in short Period

);
};

};

A client obtains the IDL definition from this
IR by using the _get_interface() method of the
CORBA Object class. This returns the Inter-
faceDef object. The full description of the inter-
face definition can now be obtained by using
the describe_interface() method on this Inter-
faceDef object.

The following code snippet illustrates this
process:

org.omg.CORBA.InterfaceDef objIntfce =
obj._get_interface();
org.omg.CORBA.FullInterfaceDescription
fullObjectInterface =
objIntfce.describe_interface();

You may now use the attributes member of
the FullInterfaceDescription class to obtain
information on the various attributes pub-
lished by the object. Similarly, you’ll use the
operations member of the FullInter-
faceDescription class to obtain information on
the various operations permitted on the
object.

To recapitulate, so far you’ve learned how
to:
• Publish an object by either binding an object

to a Naming Service or publishing its IOR on
a Web server.

• Locate an object using either a Naming Ser-
vice or Visigenic’s URL Naming Service.

• Publish the Interface Definition of the object
in the repository (IR).

We’ve also seen how a client program
retrieves this Interface Definition from the IR
and discovers all the attributes and operations
published by the object. Most important,
you’ve discovered the object and would now
like to use its services by invoking one or more
of its published methods.

Dynamic Invocation Interface
To invoke a method, you’ll first need to con-

struct a list of arguments (parameters)
required by the method. CORBA provides an
NVList object for constructing such a list. You
use the create_list() method of ORB to con-
struct it.

NVList parameterList = orb.create_list(0);

The NVList (Named Value List) contains the
names and values for the various parameters

required by the method. Initially the list is cre-
ated with zero elements. You then add ele-
ments by using its add_value() method:

parameterList.add_value(name, currentParame-
ter, mode);

where name is the string representing the
name of the parameter being added, current-
Parameter is the object that represents the
parameter and mode indicates whether the
parameter is of IN, OUT or INOUT type.

You’ll need to add the required number of
elements to the NVList depending on the num-
ber of parameters used by the desired method.
Once an NVList is constructed, you create a
request object and pass the parameters to it
using the constructed NVList object. To create
a request object, you use the _create_request()
method of the CORBA Object class.

org.omg.CORBA.Object obj = new
org.omg.CORBA.Object();
org.omg.CORBA.Request request =
obj._create_request(
null,
nameMethod,
parameterList,
resultField);

where obj is a CORBA Object, the first parame-
ter specifies the CORBA Context, which is set
to null; nameMethod is the name of the method
being invoked; parameterList is the NVList
described above; and resultField is a Named-
Value Object through which the result will be
returned to the caller.

Once the request object is constructed, you
can invoke the method on the server using the
invoke() method:

request.invoke();

This invokes the method on the server
object and returns the result, if any, in the
resultField NamedValue object. If the method
uses OUT and INOUT types of parameters,
you may examine their contents for the return
values.

User Interface
Having seen the various requirements for

DII, we’ll now discuss the user interface of our
object browser, which is used for dynamically
invoking the methods on CORBA servers for
which the stubs aren’t available at runtime.
The user interface of the browser is shown in
Figure 1.

The user enters the name of the server
object in the input panel of the browser and
clicks on the introspect button. The name spec-
ified must be the name the object is registered
under with the Naming Service. Alternatively,
the user can specify the name of the IOR file
along with the URL at which the file is located. A
typical URL string may be specified as follows:

http://www.abcom.com/abcom.ior

Figure 1: User interface of object browser

11JUNE 1999

EnterpriseSoft

EnterpriseSoft is offering
“Report Writer 2.0”

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

12 JUNE 1999

Once an object is located, the browser dis-
plays its IDL in the tabbed pane as seen in Figure
1. You can now click on the “Operation and
Attribute Listing” tab to see the various opera-
tions and attributes published by the server. If
you want to examine an attribute, click on the
desired one and its various properties will be
displayed in a pop-up window. If you decide to
invoke a method, click on the method name,
which opens a window showing the various
parameters required by the method (see Figure
1). If the method doesn’t require parameters, it’s
directly executed. If it does, the type and mode
are displayed for each one. Next to each para-
meter an edit box is provided in which the user
can enter the desired parameter value. The
browser, however, doesn’t provide any valida-
tion on the parameter values. Once all the
required parameter values are entered, the user
clicks on the invoke button to invoke the server
method. The program now builds the request
object and invokes the method on the server. If
the method completes successfully, the results
will be displayed in a pop-up window (see Figure
1). The interface is fairly easy to use. We’ll now
look into the design of the browser.

Browser Design
We used JFC for developing the user inter-

face of the browser. The browser consists of
seven public classes:
• The ObjectBrowser class, which provides

the main user interface for the application
• The InputPanel, OutputPanel and StatusBar

classes, which provide various other com-
ponents of the user interface

• The BackEnd class, which is responsible for
all CORBA-related activities

• The two helper classes, AttributeDescrip-
tion and OperationDescriptionTable, which
provide the description of attributes and
methods, respectively

The various classes and their relationships
to each other are shown in Figure 2.

The ObjectBrowser class (see Listing 1) is
the main class of the application and is
derived from the JFrame class. It creates
instances of InputPanel, OutputPanel, Status-
Bar and BackEnd classes. The main method
creates an instance of ObjectBrowser class
and displays the frame to the user. The init()
method of the class adds the three user-inter-
face elements – InputPanel, OutputPanel and
StatusBar – to the main display window. The
InputPanel is used for accepting the object ref-
erence from the user. The OutputPanel shows
the IDL listing and the operations/attribute
names to the user. The StatusBar provides a
status display to the user. The ObjectBrowser
class provides a utility method called resolve-
AndIntrospect(), which is called by the Input-
Panel class. The method receives the object
reference that’s to be resolved. The method
calls the resolve() method of BackEnd class,
and if the object is successfully resolved it
calls the introspect() method of BackEnd
class to introspect the object and to display

the IDL to the user on the OutputPanel.
The InputPanel class (see Listing 2) is

derived from the JPanel and provides the user
interface for accepting the object name. The
user interface consists of an edit box and two
buttons – Introspect and Exit. The event han-
dler for the Introspect button calls the resolve-
AndIntrospect() method on the ObjectBrowser
class by passing the received object reference.
As mentioned earlier, the object reference is
either the object’s registered name with the
Naming Service or the complete URL contain-
ing the location of the IOR file.

The OutputPanel class (see Listing 3),
derived from JTabbedPane, contains two tab
panes: one for displaying the IDL to the user,
the other for displaying the lists of operations
and attributes. The init() method sets up the
two panes. The Interface Definition pane uses a
TextArea control to display the IDL to the user.
The Operation and Attribute pane creates two
Box objects and adds JList control to each for
displaying the operations and attributes.
Whenever the user changes the selection in the
attributes list control, the showAttribute-
Description() method is called. This in turn
creates an AttributeDescription object and dis-
plays the information about the selected
attribute to the user. Similarly, whenever the
user changes the selection in the operations
list control, the showMethodDescription()
method is called. This creates the Opera-
tionDescriptionTable object and displays it to
the user. The updateList() method updates the
contents of the list control by first clearing it
and then filling it with the new data.

The AttributeDescription class (see List-
ing 4) is derived from JFrame and displays
the information on the selected attribute to
the user. The class constructor receives the
name of the attribute as a parameter and a
reference to our ObjectBrowser class. The
init() method calls its own getDescription()
method to get the information on the desired
attribute and then displays the information to
the user by calling its displayFrame()
method. The getDescription() method iter-
ates through all the attributes defined in the

fullObjectInterface variable and retrieves the
mode and type information for the desired
attribute. The displayFrame() method then
displays the attribute name, mode and type
to the user.

The OperationDescriptionTable class (see
Listing 5) derived from JFrame displays in tab-
ular format the names of parameters required
by the desired operation. The class also
accepts the values for each IN and INOUT type
of parameter from the user. In button event
handler, if the user has clicked the invoke but-
ton, we copy the input parameters from the
TextField objects in the table to a String array,
which is then sent to the BackEnd object by
calling its setParameters() method. The Back-
End will use these parameters while invoking
the server method. Once the parameters are
set, the program calls the local performDii()
method, which passes the request to the
processRequest() method of the BackEnd
class. The BackEnd processes the request and
displays the results.

The StatusBar class (see Listing 6) is
derived from the JLabel and is simply a utility
class for displaying status messages in the
browser window.

Now we come to the most important class,
BackEnd, which is responsible for all CORBA-
related back-end processing (see Listing 7).
The class constructor receives a reference to
our ObjectBrowser and copies it into a local
variable. The init() method first initializes the
ORB by calling its init() method:

orb = org.omg.CORBA.ORB.init (param, null);

If the ORB is successfully initialized, we
call resolve_initial_references() method on
the ORB to resolve a reference to the Naming
Service. We then narrow (type cast) the
returned object to the NamingContext object
type. The initialization of the BackEnd object
is complete and the object now waits for its
other methods (resolve, introspect, process-
Request) to be invoked. The resolve()
method receives the object as a string and
tries to locate the object on either the current

BackEnd

StatusBar

OutputPanel

InputPanel Attribute
Description

Operation
Description

Table

ObjectBrowser

Figure 2: Class diagram of object browser

13JUNE 1999

Inprise

www.inprise.com/appserver

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

14 JUNE 1999

ORB or the ORB running at the specified URL:

if (!(resolved = resolveUsingName(object)))
resolved = resolveUsingURL(object);

The resolveUsingName() method con-
structs the NameComponent array and tries to
resolve the object reference by calling the
resolve method of the Naming Service:

NameComponent[] name = {new
NameComponent(object, “”)};
obj = nameService.resolve (name);

If this resolution fails, we try to resolve
using the URL Naming Service. The method
resolveUsingURL() obtains a reference to the
URLNamingResolver and narrows it down to
the proper data type as follows:

org.omg.CORBA.Object resolverObj =
orb.resolve_initial_references("URLNaming

Resolver");
com.visigenic.vbroker.URLNaming.Resolver

URLresolver =
com.visigenic.vbroker.URLNaming.

ResolverHelper.narrow(resolverObj);

Next, we use the locate method to resolve
the object reference:

obj = URLresolver.locate(object);

Once the object is successfully resolved, we
obtain its interface definition by calling its
_get_interface() method:

InterfaceDef objIntfce =
obj._get_interface();

The describe_interface() method then
obtains the full description of this interface:

fullObjectInterface =
objIntfce.describe_interface();

Now we look at the method called intro-
spect(), in which we declare two Vector type
variables for storing the methods attribute and
operation lists. We obtain the number of attrib-
utes and operations from the full interface
description as follows:

final int noAttributes =
fullObjectInterface.attributes.length;

final int noOperations =
fullObjectInterface.operations.length;

The program then obtains mode, type and
name for each attribute:

for (int i = 0; i < noAttributes ; i++)
{
…

mode =
fullObjectInterface.attributes[i].mode.value

());
type =

fullObjectInterface.attributes[i].type;
name =
fullObjectInterface.attributes[i].name;
…
}

The attribute listing is then added to the
TextArea control of the output panel where
the IDL listing will be displayed to the user.
The names of attributes are also added to the
attr vector. This vector is used later to search
for a user-selected attribute name. The pro-
gram updates the list on the output panel by
calling its updateList() method. We then con-
struct the method signatures from the fullOb-
jectInterface. This time we use an operations
member variable to obtain detailed informa-
tion on each operation.

Finally, we look at the most important
method, processRequest(). This method
obtains the name of the operation to be invoked
as the parameter and invokes the method on
the server object. First we obtain the index of

the desired method from the list of operations
described in the fullObjectInterface object:

for (; i < noOperations;i++)
{
if (operationName.equals

(fullObjectInterface.operations[i].name))
break;
}

At this point variable i contains the index
for the desired operation in the operations list.
Next, we find the number of parameters
required by this operation using the statement:

int noParameters =
fullObjectInterface.operations[i].
parameters.length;

For each parameter we now need to con-
struct a proper object and an NVList contain-
ing all such parameters for dynamic invocation
of the method. The ORB provides a method
called create_list() for constructing an NVList
object:

NVList parameterList = orb.create_list(0);

The parameter to create_list() method
specifies the number of elements in the list. We
pass zero as the parameter to construct an
empty list. For each parameter we now con-
struct an object of CORBA “Any” type using
ORB’s create_any() method:

Any currentParameter = orb.create_any();

The special type “Any” defined in CORBA
is used to represent the element with any data
type. We initialize this object with the proper
data type by using the “type” member of para-
meters[i] variable. The program then exam-
ines the mode for the parameter, which can be
IN, OUT or INOUT type. The method receives
an input value through this parameter and
returns the result to the caller through the
same parameter. Depending on the value of
the mode, we set our mode variable to the
proper CORBA data type. For the IN type of
parameter the mode variable is set to
org.omg.CORBA.ARG_IN.value; for the OUT
type it’s set to org.omg.CORBA.ARG_OUT
value; and for the INOUT type it’s set to
org.omg.CORBA.ARG_INOUT value. We also set
an “accept” flag for each parameter. If the accept
flag is set, it indicates we’ll be assigning a value
obtained from the user to this object (applicable
to the IN and INOUT types of parameters).

The program then retrieves the value
entered by the user for the current parameter
by using parametersValue array. Note that all
parameter values are stored as String data type.

We now set up a switch statement to con-
vert this parameter value to the proper data
type and assign it to our parameter object in an
NVList. We check the parameter data type by
using kind() method on the current parameter:

switch
(currentParameter.type().kind().value())

The CORBA “Any” class provides several
insert_xxx types of methods to assign the
objects of various data types to the “Any”
object. For example, insert_short() method
assigns an object of type “short,” insert_long()
assigns an object of type “long,” etc. Thus, in
the switch statement, we check for the kind of
parameter required and use the corresponding
insert_xxx method to assign the appropriate
object type to our parameter object. We’ve pro-
grammed most of the cases in the switch state-
ment. Some of the complicated cases are left
out due to the complexity involved. For exam-
ple, if you want to insert a structure data type,
you’ll need a Java class encapsulating the struc-
ture definition. You can then insert a Java
object of this class for the desired parameter
value.

Once the parameter is initialized with the
proper data type and its value, we add the
parameter to an NVList using its add_value()
method:

parameterList.add_value(
fullObjectInterface.operations[i].

“DII is the ‘dream come true’

for developers since

it allows them to modify

previously published CORBA

objects without the need to

recompile and redistribute

client-side stubs”

15JUNE 1999

Cloudscape

Cloudscape is offering a FREE
30-day Evaluation License for

“Cloudscape Developer”

Cloudscape invitesall systems
integrators to rock with us at a
special reception at JavaOne

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

16 JUNE 1999

parameters[j].name,
currentParameter, mode);

The add_value() method requires the name
of the operation, the value and the mode type
of the parameter.

Once the NVList for operation parameters
is constructed, we need to create a Named
Value object for the return value of the
method. We construct and initialize this
NamedValue object using the following lines
of code:

Any resultParameter = orb.create_any();
resultParameter.type
(fullObjectInterface.operations[i].result);

org.omg.CORBA.NamedValue resultField =
orb.create_named_value("resultField",
resultParameter,
ParameterMode._PARAM_OUT);

We set the proper data type for the result
by using the “result” data member of the
desired operation. The NamedValue object is
constructed using the create_named_value()
method of CORBA Object class. At this stage
we’re ready to build our request object, which
we do by calling the _create_request() method
on the CORBA object:

Request request =
obj._create_request(null,

fullObjectInterface.operations[i].name,
parameterList, resultField);

The _create_request() method requires
four parameters. The first specifies the CORBA
context and is set to null in this case; the sec-
ond specifies the operation name; the third
specifies the NVList containing the list of para-
meters required by the operation; and the
fourth is another NVList in which the return
value, if any, is returned.

You’re now ready to invoke the method on
the server, a simple process. You use invoke()
method on the request object to invoke the
method on the remote server:

request.invoke();

The method is executed on the remote
server and the result, if any, will be returned in
the result NamedValue object, OUT parame-
ters and INOUT parameters. We now display
the results to the user by constructing a
JFrame object and displaying the information
in label controls. The return value of the
method is obtained using the expression
request.result().value(). Similarly, the values
of OUT and INOUT parameters are obtained
using the expression resultList.item(j).value().
If the method invocation fails for any reason,
we construct the JFrame object to display the
appropriate message to the user.

Having seen the design of the object brows-
er, we now examine how to compile and run
the entire application.

Running the Browser
We used JDK 1.1.5 and Swing classes for the

development of the object browser. We’ve cre-
ated several batch files for compiling and run-
ning the code. The swingcompile.bat file (see
Listing 8) compiles the entire source. This file
contains the following statement:

javac -classpath %SWINGPATH% %1

where SWINGPATH is the system variable
defined on our system that sets up the class
path for Java, Visigenic CORBA and Swing
classes.

The parameter to the batch file is our main
Java class – ObjectBrowser.java. If your class-
path is set properly, running swingcompile
batch file should compile all the relevant files.

Before you run the browser, you need to do
certain startup operations, such as starting
OSAgent, starting the Naming Service, etc.,

with the help of startup.bat file (see Listing 9).
This batch file starts the OSAgent using the fol-
lowing command line:

start OSAgent –c

Next, it starts the interface repository using
the following command line:

start irep InterfaceRepository ABCOM.ir

The command irep starts the repository
service. The name of our repository is Inter-
faceRepository, and it’s stored in the file called
ABCOM.ir in the current folder. Next, the
CORBA Naming Service is started using the fol-
lowing command line:

start vbj -DORBservices=CosNaming
-DSVCnameroot=ABCOM –DJDKrenameBug

com.visigenic.vbroker.services.CosNaming.
ExtFactory ABCOM namingLog

Our Naming Service starts with the root
object set to “ABCOM”.

This completes the operation of our startup
batch file. When you run this batch file, you’ll
notice that three windows pop up on your ter-
minal; one is used by OSAgent, the second by
Interface Repository and the third by the Nam-
ing Service.

Now we’re ready to run our object browser,
which is started using show.bat file (see Listing
10):

vbj -DORBservices=CosNaming -

DSVCnameroot=ABCOM -VBJclasspath
"%SWINGPATH%" ObjectBrowser

Running this batch file starts our object
browser. You’re now ready to discover any
object either in the current ORB or the ORB
running at some known URL. We’ve provided a
test server application for your convenience.
It’s called SampleServer (see IDL Listing in
Sample.idl file) (Listing 11). The server pro-
vides three sample methods:
• DoubleValue(), which takes an IN parameter

of type float and returns a float value to the
caller as a method return value

• CountCharacters(), which takes one string
parameter of IN type and returns the charac-
ter count in an OUT type parameter

• ReverseString(), which takes an INOUT type
parameter of type string, reverses the string
and sends it to the caller through the same
parameter

The implementation files, along with the
compiled code, can be downloaded from the
JDJ Web site. You’ll need to run idl2ir to load
the IDL into your IR before running the Sample-
Server application. The application registers
itself with the Naming Service using the name
“SampleObject”. Type this name in the browser
input panel and click on introspect to display
the IDL. You can then select any of the three list-
ed methods, invoke them and test the result.

Conclusion
The DII is probably the most complex – yet

most versatile – interface provided in CORBA.
It allows you to discover and use a CORBA
object at runtime without the need for com-
piled stubs. We’ve described the entire DII
mechanism and the design of a CORBA object
browser that’s based on the discussed tech-
niques.

Acknowledgments
We’d like to thank Kamal Shah and Bhakti

Mehta for their valuable help in the develop-
ment and testing of the CORBA object browser.

About the Authors
Dr. Poornachandra G. Sarang is president and CEO
of ABCOM Information Systems Pvt. Ltd., a consulting
firm specializing in Internet, Java, CORBA, Visual C++
and VB programming and training. He can be
reached at sarang@abcom.com.

Mohan Rajagopalan is currently studying for a degree
in computers, and plans to pursue a graduate degree
specializing in distributed systems and heterogeneous
networks. The CORBA object browser was developed
as part of his practical training at ABCOM. He can be
reached at mohan@abcom.com.

sarang@abcom.com mohan@abcom.com

“The DII is probably

the most complex – yet

most versatile – interface

provided in CORBA”

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

17JUNE 1999

Oracle

Oracle is offering
FREE internet seminars

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

18 JUNE 1999

Online stores are the new, next-generation, “revolutionize
the world as we see it today” way of doing business. In the
context of business transactions, online stores use the global
Internet to facilitate purchase and sale of goods and services.
The ability to support online sales is an essential component
of the new e-commerce paradigm for Internet-based busi-
nesses today. Putting together an enterprise-level application
for an Internet store involves design and integration of vari-
ous technologies that play specific roles in a distributed com-
puting environment. A distributed topology is a prerequisite
for building such Internet applications since the Internet is
inherently distributed in nature.

AN ONLINE AIRLINE
TICKET STORE USING
JAVA AND COLDFUSION

Working
Together:

Competing, yet
complementary,

technologies
Part 1

by Ajit Sagar

19JUNE 1999

Due to the plethora of alternative tech-
nologies available in the computing arena
today, designing an enterprise application
involves choosing between technologies
based on feasibility, applicability, cost, avail-
ability and several other factors. No solution
is “the right one.” The hard part is to figure
out which technology to use to provide a par-
ticular functionality. The challenge is to take
competing and complementary technologies
and make them play nicely together.

This is the first in a series of articles on
some of the prominent technologies available
to build a simple Internet-based Ticket Store
application. This application offers online
purchase of airline tickets as well as goods
sold in airports. Our discussion is focused on
two popular technologies: Java platform com-
ponents (Java Applets and Servlets, RMI and
JDBC) and Allaire Corporation’s ColdFusion
application server. The modules implemented
using Java technologies will be presented
here and in three subsequent issues of Java
Developer’s Journal. The modules imple-
mented using ColdFusion will be discussed in
Volume 1, issues 4–6, of ColdFusion Develop-
er’s Journal.

One objective of this design is to illustrate
how Java Servlets can be used as access
mechanisms in server modules that serve up
data to front-end storefront modules imple-
mented in ColdFusion. A simple protocol for
exchanging name-value parameters between a
Java Servlet running in the middle tier and a
ColdFusion engine running in a front-end tier
will be used for this purpose.

I’m assuming that readers are familiar with
the Java technologies mentioned earlier.
Knowledge of ColdFusion is not assumed for
the JDJ articles. This article will concentrate
on the modules that constitute the applica-
tion, the technologies used to build the store
and the “protocol” for sending data back and
forth between the Java components and the
ColdFusion templates.

Please note that this is not a real-world
application, but one I put together to demon-
strate how components and services imple-
mented in an application server (like ColdFu-
sion) and the Java platform may be used to
build a distributed e-commerce application.
This application will evolve over the next few
months. Readers are encouraged to provide
feedback if they’d like to take part in defining
the scope and design of this application.

The Online Ticket Store
The Online Ticket Store is an Internet-

based application that allows an Internet user
to log in and purchase tickets via a browser. It
accepts credit card payments for purchases
and also maintains corporate accounts for its
customers. The store is a front end for the ser-
vices offered via airline agency back offices.
These back-office locations provide ticket
price/availability information and accept tick-
et reservations. The store:
• Acts as a ticket agent and may be used to

purchase tickets, comparison-shop
between different airlines and determine
flight itineraries.

• Provides an interface to a virtual airline
store that allows catalog sales of merchan-
dise such as clothes, appliances, computer
equipment and other goods usually offered
in airline magazine catalogs.

• Allows Internet users to lease equipment
for in-flight use, including laptops and
printer, portable CD players and music CDs.
The idea is that a person who uses the
Internet to reserve a flight can instruct the
airline to have the leased equipment avail-
able on the flight he or she will be taking.
The equipment will be available to the pas-
senger on boarding and will be surrendered
when he or she leaves the plane.

The software components that make up
the Online Ticket Store, their functions and
the technologies used for their implementa-
tion are illustrated in Table 1. Only the mod-
ules used for ticket transactions are listed.
The modules used for building the virtual
store will be discussed in a future article.
We’re not too concerned about the airline’s
back offices. Our focus on the back office will
be limited to the access mechanisms used for
the services offered by the back office. For
example, how an airline prices and reserves
tickets is beyond the scope of this article.
However, the format in which a back office
accepts a reservation request and the format
of the response will be defined here and in
subsequent articles. The transport mecha-
nism (RMI/CORBA/other) will also be dis-
cussed and implemented, although security
issues involved in transporting the data will
not.

The application modules are illustrated in
Figure 1.

Application Framework
The framework for this application is dis-

tributed among the following tiers:
• Client UI: The end-user interface into the

Ticket Store. The client UI is responsible for
the front-end interaction with the customer
and connection to the data tier that main-
tains the Internet user’s data and conducts
transactions with the Internet user. In our
application this is typically a Web browser.

• Merchant Server tier: Where the applica-
tion server that serves data to the client UI
resides. It has a data store for the cus-
tomer’s profile and maintains the shopping
cart, catalog for merchandise, etc. It inter-
acts with the Services Access tier to get
information from the various data sources
(airlines).

• Services Access tier: Middleware tier that
accepts service requests from the Mer-
chant Server tier, routes them to the Appli-
cation Services tier and serves back the
response to the Merchant Server tier.

• Application Services tier: Offers the ticket
price/availability quote services.

20 JUNE 1999

Figure 2 illustrates the application frame-
work tiers.

Java Servlets and ColdFusion
The Merchant Server interacts primarily

with the Service Access tier via a URL con-
nection and is implemented using the ColdFu-
sion 4.0 application server. For the purposes
of this application I developed a custom tag
called CF_Servlet (see CFDJ Vol. 1, issue 4).
While details of the custom tag aren’t relevant

to the JDJ articles, they will be discussed in
CFDJ.

Before describing the access mechanism,
I’ll elucidate why specific modules are imple-
mented in ColdFusion while others are imple-
mented using different Java technologies.
ColdFusion is an application server whose
most important feature is its ability to con-
nect to data created and maintained in other
applications. It allows the building of dynamic
queries on the fly to retrieve data from such

applications. It achieves this through the use
of a very flexible tag-based markup language.
This makes it an ideal tool for creating dynam-
ic Web application components such as shop-
ping carts, account management modules,
purchasing modules, customer profiles, etc.

Servlets, on the other hand, excel at mak-
ing server-side services available to the client
in a dynamic and interactive fashion. Servlets
can be used to efficiently access a variety of
services offered across different tiers of a dis-
tributed architecture. Servlets basically serve
HTML to the client. They also bring access
control and enhanced security into the equa-
tion. They are closely tied to the Web server
they run in and thus help extend the server’s
capabilities to the client. One thing they’re
NOT designed for is building sophisticated
GUIs. They are primarily “HTML servers.”

Typically, ColdFusion-based applications
and Java Servlets can be used in conjunction
if the division of functionality leverages these
strengths. In our application, all data pertain-
ing to the customer should reside in the Cold-
Fusion components and be presented to the
customer in a snazzy and sophisticated user
interface. However, when back-office services
like ticket price/availability quotes need to be
dynamically accessed (e.g., for submitting a
request for a ticket quote), Java Servlets pro-
vide an ideal access mechanism to these ser-
vices. The Merchant Server tier uses the Ser-
vice Access tier:
1. To access server-side Java services. Non-

Java (C++) services could be accessed
using JNI.

2. To gain access to RMI/CORBA services.
3. To perform sophisticated computation-

intensive tasks on the server as opposed
to burdening the client with this responsi-
bility.

This is based on the premise that the air-
line back-office services are publicly pub-
lished as RMI/CORBA services. The Service
Access tier dynamically queries the various
airlines for the ticket price/availability and
returns a quote based on some predeter-
mined selection rules. The Service Access tier
also maintains a database that captures each
interaction with the Application Service tier.
This database can be used for statistical
analysis in the future, after the data has been
accumulated over a period of time. The data
would be valuable to the airline agencies. For
example, if most customers have been reject-
ing an airline’s quotes because the price is too
high, the carrier would probably want to be
aware of this fact.

Implementation
The rest of this article discusses the imple-

mentation of a test scenario for the applica-
tion. Basically, it shows the interaction
between a Java Servlet and an RMI server for
getting a quote for a ticket. The servlet should
be accessible from the ColdFusion template
described in the corresponding CFDJ issue.

Travel
Profile

Manager

Travel
Profile

Database Ticket
Sales and

Reservation
Broker

Ticket
Prices

Travel
Profile

Manager

Travel
Profile

Database Ticket
Sales and

Reservation
Broker

Ticket
PricesPayment

Manager

Personal
Profile

Manager

Customer
Profile

Database Shopping
Cart

Payment
Manager

Personal
Profile

Manager

Customer
Profile

Database Shopping
Cart

Login Manager
Client Middle TierClient Middle Tier

To airline
services

Figure 1: Application modules

Table 1: Online Ticket Store functions and technologies used

Main Implementation
Component Function Technologies
Personal Profile Maintains a personalized profile for end ColdFusion, Microsoft
Manager customer, including data about flight Access database

preferences, frequency of transactions,
history of goods purchased, etc. May be
updated by customer.

Travel Profile Keeps track of customer’s travel history, Java Platform (Servlets,
Manager preferred airlines, etc. The data here, JDBC, RMI), Microsoft

captured and maintained by the Ticket Access database
Store, will be of interest to the airlines that
collaborate with the store.

Payment Manager Manages payments made by customer ColdFusion
while interacting with the system. Consists
primarily of credit card-based payment
management.

Login Manager Manages user login, authentication, ColdFusion and Java
passwords. Servlets

Shopping Cart Keeps track of customer’s current purchase ColdFusion
as well as pending orders for purchased
goods.

Ticket Reservation The main operational module for conducting ColdFusion and Java
and Sales Broker transactions related to online ticket sales. Servlets
Ticket Pricer Interfaces with back-office modules to get Java Servlets, Java networking

ticket price and availability information. API, RMI, CORBA, JDBC

21JUNE 1999

InterBase

Interbase is offering a
FREE 5-user evaluation

version of their embedded
database to JDJ readers

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

However, you can also run it from a regular
browser by invoking the corresponding URL.

Before we define the protocol for commu-
nication between the Merchant Server and
the Service Access tiers, let’s examine the
information we’d like to pass between the
two. A typical end-to-end transaction in this
system would have the following steps. Please
note that for this transaction we’re not mak-
ing use of the Customer Profile Manager, Trav-
el Profile Manager, Shopping Cart and other
components that are a part of the application
implemented in ColdFusion:
1. The user feeds in his or her input for a flight

quote request via the Client UI (Web brows-
er). This actually invokes the ColdFusion
template on the Merchant Server.

2. The request goes to the Merchant Server. A
ColdFusion template passes the data to the
Service Access layer by invoking a servlet.
Let us call this the TicketServlet.

3. The TicketServlet packages the data into a
TicketQuery object.

4. The TicketServlet sends the TicketQuery
object to the different airline carriers as a
request for a price and availability quote.

5. The TicketServlet receives the quote from
the different carriers in the form of Tick-
etQuote objects.

6. The TicketServlet chooses the price
quote/quotes based on some predefined
selection rules.

7. The TicketServlet packages the response
into HTML and passes it back to the Mer-
chant Server.

8. The corresponding ColdFusion template at
the Merchant Server converts the response
into a Web page that it serves back to the
Client UI. For this article the UI is in the
form of a browser at the client site.

Here, we’ll just look at the classes that will

implement this scenario. The logic in these
example classes is hard-coded. The actual
implementation will be developed in subse-
quent articles. The classes used for the basic
scenario are:
• TicketServlet (Listing 1): Receives a ticket

request from the Merchant Server, forwards
it to an RMITicketServer and passes back
the response to the Merchant Server.

• TicketQuery (Listing 2): Encapsulates a
request for a ticket quote.

• TicketQuote (Listing 3): Encapsulates a
ticket quote.

• TicketServerList (Listing 4): This is the
interface for the services offered by the
application services tier.

• RMITicketServer (Listing 5): Processes the
TicketRequest object and sends back a
TicketResponse object.

• RMITicketClient (Listing 6): This is accessed
by the TicketServlet for submitting the
request to a Ticket Server.

The TicketServlet is the access mechanism
for the RMI services offered by the RMITicket-
Server. The access protocol between the Cold-
Fusion template and the TicketServlet is very
simple. Since Servlets are accessible via a
URL, the most convenient way to pass data
between the two is in the form of Name-Value
parameters that can be passed in the query
string of the URL. The Servlet creates a Tick-
etQuery object from these parameters. The
TicketQuery object is propagated directly to
an RMITicketServer via a RMITicketClient
object. The RMITicketServer creates a Tick-
etQuote and passes it back to the Ticket-
Servlet. The TicketServlet creates an output
string in the form of Name-Value pairs, which
are passed back on its output stream to the
ColdFusion template.

The flight quote requested from the client
is simple and doesn’t contain all the fields
necessary to process the actual flight request
that will be used in our application. In fact, the
TicketQuote only contains a single field,
which is the price for the flight. The refined
classes for the application will be discussed in
the next part of this article series.

Environment
The code for this article was developed

using JDK 1.1.7B on an NT 4.0 workstation.
The TicketServlet is accessed using Jrun Pro
2.2. The code listings may be obtained from
the JDJ Web site.

About the Author
Ajit Sagar, a member of the technical staff at i2
Technologies in Dallas,Texas, holds an MS in
computer science and a BS in electrical engineering.
He focuses on Web-based e-commerce applications
and architectures. Ajit is a Sun-certified Java
programmer with nine years of programming
experience, including two and a half in Java.
You can e-mail him at Ajit_Sagar@i2.com.

Application Services Tier

Merchant Server Tier

Client UI (Browser)
Internet

Internet User

RMI/CORBA

ColdFusion
App Server

Service Access Tier

Java ServletsWeb Server

U

}
Java
Platform
Components}

Figure 2: Application framework tiers

<<interface>>
java.rmi.Remote

java.rmi.UnicastRemoteObject
 {abstract}

<<interface>>
java.rmi.Remote

RMITickerServerRMITickerClient

TicketQuoteTicketRequest

Ticket Servlet

RMI classes
KEY

RMI application
classes

Application
classes

Figure 3: How the classes interact.

Ajit_Sagar@i2.com

22 JUNE 1999

23JUNE 1999

Blue Sky

www.blueskysoftware.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

24 JUNE 1999

Can you believe it? I know I certainly
can’t. This column is officially celebrating
its twelfth issue, and being the mathemati-
cal genius that I am – and since this joyous
magazine is printed on a monthly schedule
– I can safely deduce that our first year
anniversary is upon us. Fantastic. Experts
reckon that most marriages break up in the
first year, so I guess we’ve successfully
made it past the hardest part.

On that note I think we’ll take a
whistlestop tour of what I’ve been ranting
about over the last year and look at any
changes that make the arguments posed in
the last 12 months seem silly now.

Updates
I’ve looked at a variety of issues that

touch most of us in the Java world. As regu-
lars know, this column isn’t afraid to walk
on the ice of controversy. It’s been known
for us to name names, and to make some of
the bigger names accountable for their
actions. A regular figure in this has been
Oracle.

Oracle produces its own set of JDBC dri-
vers for us developers to use to interact
with their excellent back-end database. On
the database front, we can’t really complain.
They do handle data very well. If you
remember, however, back last summer we
had a real problem using this functionality
due to the poor implementation of their dri-
ver. Back then, Oracle didn’t really embrace
the developer community.

Another issue we’ve touched on is that
of recruitment and finding that special
developer. Well, our search is still continu-
ing. And boy, are we learning a lot about the
process along the way! Last time, I com-
mented that the overall standard of Java is
becoming lower and lower as everyone and
their dog decide they want to jump on the
Java bandwagon. I’ve seen no evidence in
the time between that article and this one to
alter my opinion.

It’s the time of year when the universi-
ties open up their doors and a raft of gradu-
ates pour out. Many of them have degrees,
which, I have to say, probably aren’t worth
the paper they’re written on. I’m sure the
American system is no different, but here in
the UK there is a big drive to keep bums on

seats in the universities as long as possible
as this affects the universities’ funding from
the government. This has the knock-on
effect of trying not to fail people. When I
was at university the pass rate for our finals
was 40%. Even back then I thought this ludi-
crous. You only had to know 40% of your
subject to get a degree! Doesn’t seem right,
does it?

Well, I think the industry is going to suf-
fer badly from it. We’re experiencing this
now: people coming out with real generic
degrees, such as “I.T.,” thinking they have a
skill set, only to realize that they aren’t a
great deal of use to employers. The reason I
pick on the IT brigade is that some of them
have taken a small Java course and sudden-
ly think they’re software engineers. I don’t
think so.

Everywhere we read, there’s a real seri-
ous skill shortage. I can see this now;
before, I couldn’t. I couldn’t equate the num-
bers originating from final year degrees to
the number of positions actively sought by
employers. It was an equation that on paper
should have added up. In reality it didn’t.

My concern with all this, as regulars will
know, is keeping the quality of development
up. Let’s not pretend to people that if they
take a six-month course in Java they’re sud-
denly software engineers. This isn’t doing
them any good, and it sure as hell isn’t
doing the industry as a whole any favors. I’d
love to hear your thoughts on this, so
please join our mailing list and let me know
what you think.

Mailing List
Whoa! Let me say “thank you” to all the

subscribers to our Straight Talking mailing
list. This is providing some very interest-
ing and stimulating conversation. The
quality of posts coming through on the list
is quite astounding, and the mix of people
we have contributing ensures a balanced
debate from all walks. Please feel free to
join us. You don’t have to contribute
immediately – just listen to the rants and
raves of everyone. It isn’t a technical list.
We don’t debate Java problems. We look at
the issues and concerns facing the upcom-
ing Java developer. To join send an
e-mail to listserv@listserv.n-ary.com with

“subscribe straight_talking-l” in the body of
the e-mail. From there you’ll get instruc-
tions on how to participate.

Salute of the Month
Let me introduce you to a new section:

Salute of the Month. Over the last few
months I have been openly thanking people
for their various contributions to the Java
world and I thought I might as well formal-
ize it. So here goes, the first of a new series.

As this column rolls into a new year of
life, I can say I have met many new friends
through this magazine you’re holding in
your hand. Over the 12 months I’ve been
slowly building a picture of who you are,
and trying to write material that is of inter-
est to you. One of my biggest surprises was
the fact that many of you aren’t developers.
Many of you have never coded a single line
of Java in your life and probably never will.
I received an e-mail from an atypical reader
from this group a couple of months ago.
Sallee Gambino, a recruitment consultant in
New Jersey, e-mailed me to say how much
she valued my column as it helped her keep
abreast of the latest developments in the
Java universe. Over a period of e-mails, I
probed this lady for more information, try-
ing to figure out how reading this column
and this magazine helped Sallee recruit bet-
ter.

As you know, I’ve had my share of things
to say about agencies that can’t even tell
the difference between JavaScript and Java.
My experience has shown me that many of
them fall into this category. So you can
imagine my surprise when I bump into
someone that is actively taking an interest
in the area they are recruiting for as
opposed to blind CV-keyword matching.
Sallee wants to catch out a lot of the buzz-
word kings and therefore offer a higher cal-
iber of candidate to her end client. Also,
knowing the industry allows Sallee to under-
stand more of her clients’ needs.

About the Author
Alan Williamson is CEO of n-ary ltd, a Java
consultancy company with offices in Scotland,
England and Australia, specializing solely in Java at
the server side. Alan is the author of two Java Servlet
books and contributed to the 2.1 Servlet API. He can
be reached at alan@n-ary.com (www.n-ary.com) and
welcomes all suggestions and comments.

Happy Birthday!

STRAIGHT TALKING

A look at what’s happened over the
past year and what’s going on now

by Alan Williamson

alan@n-ary.com

25JUNE 1999

Zero G Software

www.zerog.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

26 JUNE 1999

In last month’s e-Java we discussed the
technologies and APIs offered by the Java
platform that play specific roles in e-com-
merce solutions for the enterprise. We also
took a high-level glance at how they fit in an
n-tier commerce application. Java provides
substantial support for e-commerce–based
applications; however, Java alone doesn’t
provide an end-to-end solution for e-com-
merce–based businesses. Components of
the Java platform integrate with complemen-
tary technologies to offer complete Internet
commerce solutions.

Nowadays the acronym “XML” is found
lurking in almost any literature or site that
mentions e-commerce. Some consider XML
(Extensible Markup Language) to be the
enabling technology that will allow the
World Wide Web to become a breeding
ground for open commerce-based applica-
tions. XML helps expand existing technolo-
gies into new dimensions of document pub-
lishing and content management, addressing
the needs of a distributed Web-based envi-
ronment.

The Java platform and XML are comple-
mentary technologies that together can pro-
vide a solid foundation for commerce-based
transactions across the Internet. This month
in e-Java we’ll look at how Java and XML can
work in the world of e-commerce. Please
note that this article doesn’t focus on XML
itself (although a brief discussion is provid-
ed in the next section) or on Java, but rather
on how the two technologies provide such a
powerful combination for enabling e-com-
merce applications.

Data Content, EDI and XML
The premise behind Internet commerce

is that business transactions can be con-
ducted efficiently and safely over different
tiers of the Internet. The evolution of
client/server architectures, which are an
integral concept behind the Internet, has
seen a migration from two-tier architectures
to multitier distributed architectures. This

places greater demand on the safe and cor-
rect passage of electronic data from an
Internet source to the corresponding desti-
nation. The whole purpose of such com-
merce transactions is to transfer data con-
tent between the two parties participating
in the trade.

EDI (Electronic Data Interchange) has
been the enabler for electronic transactions
for several years now. EDI is a process for
exchanging data in an electronic format
between heterogeneous applications and/or
platforms in an automated fashion, i.e., with-
out manual intervention. However, when
applied to an Internet environment, it falls
short on several accounts, some of which
are:
• Scalability across multiple tiers of the

Internet
• Lack of support for dynamic data content

definition
• Slow adoption to standards
• Lack of flexibility in defining business rules

XML leverages EDI technology and adds
the necessary pieces to migrate it to an
Internet environment. It does so by adding
the following:
• Ability to separate the data and structure

(electronic content) from the processes
• Ubiquitous interconnectivity between

trading entities (this isn’t directly provid-
ed by XML, but rather by the Internet)

• Support for dynamic data format defini-
tions

• Middle-tier storage for caching data
• Widely accepted standards governed by

the W3C (World Wide Web Consortium)

HTML and XML
HTML is a presentation markup language

that offers a standard format for displaying
data in a Web browser. While it provides a
standard format for displaying data, the
focus is on the visual presentation of data
and not on sophisticated data types, as
required by e-commerce applications. XML,
on the other hand, focuses on data content
and provides a clear separation between
content and visual presentation. It does this
by allowing the applications to define tags
that describe the data they’re exchanging
across the Internet. XML allows the tag infor-
mation to be embedded in the document
itself, so that the document is “self-describ-
ing.” XML standards allow business partners

E-JAVA

Java and XML in the
World of E-Commerce

How these two technologies provide such
a powerful combination for enabling

e-commerce applications
by Ajit Sagar

HTML
Implementation

CFML

CDF

OFX
Web

browser

Document Presentation Document Content

grufl trlub bw rha taij

bloyyare contijzop

erip thewfrap reomab

SGML

XML

Figure 1: Relationship between SGML, HTML and XML

27JUNE 1999

Riverton Software

www.riverton.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

28 JUNE 1999

to define their own self-describing markup
languages for supporting electronic com-
merce.

Both HTML and XML are derivatives of
SGML (Standard Generalized Markup Lan-
guage). However, while HTML is an imple-
mentation of SGML for visual presentation,
XML is a subset of SGML used for writing
markup languages that specify the format
for expressing data content. Figure 1 shows
the relationship between HTML, SGML and
XML.

XML + Java = Portable Objects
So how does all this relate to Java? Well,

there are two main aspects of an Internet
commerce application. We’ve taken a look at
the first – data format and content. XML
enables electronic data to be represented in
a platform and language-independent man-
ner. This data can be available across sever-
al different enterprise domains. However,
data by itself doesn’t do anything. It needs
to be processed by applications. For XML
data to be used in a platform-independent
manner across the Internet, it needs a hard-
ware-independent environment. The Java
platform provides such an environment by
offering a distributed, homogeneous com-
puting architecture that resides on the dif-
ferent tiers of the Internet. Java “Internet-
enables” XML documents by adding net-
working and cross-tier transportation capa-
bilities.

Java and XML together address the issue
of portability in e-commerce, an issue that’s
crucial for successful implementation of
Internet-enabled commerce applications.
XML provides data that’s portable across
different application domains. It does so by
representing data in a common, well-known
format. Java provides code that’s portable
across different hardware and operating sys-
tems. The code adds the functionality for
processing and manipulating the data. A nat-
ural consequence of this alliance is highly
robust, componentized and maintainable
applications.

The synergy between XML documents
and Java code is due to the fact that the data
encapsulated by XML tags can be easily
expressed as Java objects and vice versa.
The entities that take part in an e-commerce
application are defined in an object-oriented
manner as “data objects.” This gives rise to
“objects” that are portable across the differ-
ent tiers of a distributed application. You
can almost look at these as “portable
objects” that morph into XML elements
(defined by tags) when they need to be
transported between hosts. They morph
back into Java objects when they need to be
processed or manipulated.

In other words, working between XML
and Java involves the following steps:
• Constructing a Java object model from an

XML document by creating Java objects
from XML tags.

• Using the Java object model to process
the data. This should focus on computa-
tion-intensive tasks that need to be per-
formed on the data to support the overall
business transaction.

• Generating an XML document from the
Java object model by converting the Java
objects to the corresponding XML data
tags.

The transformations between XML and
Java are illustrated in Figure 2.

DOM and SAX
An XML document has to be processed in

order to be used. This requires an XML
processor that can:
• Parse XML documents – an XML parser
• Create XML documents – an XML editor
• Provide an API to access the parts of an

XML document

The parsers and editors may be written
in Java, which makes them portable across
various platforms. The real key to the
XML–Java interoperability, however, is the
APIs used to access the elements of an XML
document. An additional advantage Java
brings to XML parsers and interpreters is
allowing the XML interface with the Java
data processing application to be accessible
via different Java components – server-side
Java Servlets, client-side Applets, middle-
tier EJBs or JavaBeans in an IDE. Java also
adds its robust security services to the mix.
As mentioned earlier, Java components
reside in different tiers of a distributed
application.

The XML APIs are of two types:
1. Document Object Model (DOM): DOM is a

platform-independent, language-neutral,
tree-based API. It compiles an XML docu-
ment into an internal tree structure and
allows an application to navigate that tree
based on the API it exposes. One of the
specifications of the DOM interface is in
Java (the others are in OMG IDL and
ECMAScript). The Java API for DOM is
known as Java Language Binding and
describes the Java DOM interface.

2. Simple API for XML (SAX): SAX is a sim-
ple, event-based API for XML parsers. SAX
doesn’t require the creation of an internal
tree structure to represent the complete
parsed XML document. Instead, when
parsing an XML document, it provides

XML to
Java

Parser

Java to
XML

Java Object
model

Java Platform

XML
document

XML
document

Figure 2: XML and Java document representation

Web Server

Servlet

Web
Browser

Web
Browser

XML
processor

HTML
document

XML
document

HTML
document

HTML
document

Figure 3: XML presentation in a Web browser

29JUNE 1999

Progress Software

www.apptivity.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

30 JUNE 1999

events that indicate the detection of the
following: start/end of the document, Doc-
ument Type Declaration (DTD), start/end
of elements, element attributes, character
data, unparsed entities, processing
instructions and more. SAX provides a
Java interface that allows any Java appli-
cation to access any XML parser as long
as the parser has a SAX driver.

Publishing XML
In a transaction, XML may be used to

transport data between the two partners.
The data that’s obtained at one end of the
transaction may be processed but need not
be displayed in a UI (indeed, that’s the
advantage of separating content from pre-

sentation). On the other hand, one of the
desirable features of Web-enabled data is
the ability to view the data in a Web brows-
er. Such data may be in the form of a catalog,
a quote request/response, etc. In a simple
client/server scenario, there are several
ways of rendering XML data in a browser:
• Process XML into HTML on the server and

send to the client browser.
• Process XML into HTML directly on the

client and display on the browser.
• Display the XML document directly.

Of these three, the third mechanism
makes use of XSL (Extensible Style Lan-
guage). The other two can be achieved by
Java platform components. Java Servlets

can be used to process XML on the server
and send the output to the client as plain
HTML. XML-aware Java Applets can be used
to process XML on the client. The applet can
bind the required parts of the XML docu-
ment into particular HTML components for
display. Browsers like Microsoft’s IE 4.0 sup-
port this functionality.

These two mechanisms for rendering
XML in a Web browser are illustrated in Fig-
ure 3.

Role of XML and Java in
Enterprise Application Integration

This is the year in which the Java plat-
form APIs are really making their mark in
integrating enterprise applications. Although
the definition of Java’s Enterprise APIs has
been there for a while, they’re only now
achieving a level of maturity that makes
them suitable in real-world enterprises. EAI
is the mechanism for integrating several dis-
jointed applications to provide a common
application interface. XML allows Java
objects to be represented as data that moves
across middleware tiers that may not be
Java-based.

XML/EDI DataBots
Remember that XML transports data con-

tent, not behavior. The XML/EDI initiative is
based on the concept of active objects that
have inherent processes associated with
them. These are defined by rule templates
that can be supplemented by XML/EDI data
manipulation agents (DataBots) to ensure
that users can express their requirements in
high-level, natural language. Currently, the
ECMAScript subset of the Java programming
language provides the vehicle that permits
the DataBots to be deployed and received
along with XML/EDI messages.

Trading Places
Java and XML complement each other in

facilitating Internet-based e-commerce appli-
cations. However, the compatibility between
such technologies, their common environ-
ments and their complementary role in
designing e-commerce applications is large-
ly because they’ve found a common home in
the Internet. In other words, the Internet is
the environment that has created the need
for, and promoted the wide acceptance of,
enabling technologies like Java and XML in
the world of e-commerce.

About the Author
Ajit Sagar, a member of the technical staff at i2
Technologies in Dallas,Texas, holds an MS in
computer science and a BS in electrical engineering.
He focuses on Web-based e-commerce applications
and architectures. Ajit is a Sun certified Java
programmer with nine years of programming
experience, including two and a half in Java.
You can e-mail him at Ajit_Sagar@i2.com.

Specialized
Software

www.specialized-
software.com/jdj

Ajit_Sagar@i2.com

31JUNE 1999

Cerebellum Software

www.cerebellumsoft.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

32 JUNE 1999

A lot has been said and written about Java’s
“write once, run anywhere” (WORA) capability.
There have been both supporters and detractors
(e.g., “write once, debug anywhere”). Java’s
statement of WORA raised expectations about
Java to the highest possible level and Java is
often measured against these expectations.

The inventors of Java made the WORA claim
based largely on Java’s architecture, which

includes both a technical and business architecture. The former
includes such things as the Java Virtual Machine, Java bytecodes and
standardized Java APIs. With the JVM, model applications can be
developed based on a standardized language and API, and be pro-
tected from the need to incorporate special code for each supported
platform.

The Java business architecture is support-
ed by Sun’s JVM licensing program that
essentially distributes the development of
platform-specific JVMs throughout the com-
puter industry with such companies as
Microsoft, Apple, IBM and Oracle. It’s inter-
esting to note that Java supports not only dis-
tributed computing from a technical view-
point, but distributed industrywide software
development from a business viewpoint as
well. Java is successful and will continue to
be successful because of the synergy
between its technical architecture and busi-
ness architecture.

It’s true that Java initially didn’t live up to
the WORA expectations it set for itself. Even
now there isn’t a perfect WORA world for Java developers. This is an
ongoing process and it appears that there is continuing progress.

The real value of Java can be determined not by how it measures
up against its lofty expectations, but by how it compares to the old
world of portability.

My experience with portability comes from the early days of Ora-
cle. The first version was developed in assembly language. We soon
discovered C, and set about to create the world’s most portable data-
base. History has shown that we did indeed accomplish this.

As with Java, a technical and business architecture supports Ora-
cle portability. The technical architecture was simple. We segregated
code into generic (kernel) modules and operating system-dependent
(OSD) modules. Initially there were 30 or so OSD modules. Today
there are hundreds. OSD modules are rewritten and maintained for
each platform Oracle supports. Essentially Oracle has created its
own virtual machine. If invented today it might be called the OVM.

The Oracle portability business architecture is quite simple as
well. With Oracle’s multibillion-dollar revenue base, it can finance
the continual cost of porting to the 70+ platforms Oracle sup-
ports today. It’s estimated that for every kernel database engi-
neer there are about three porting engineers at Oracle. Even Ora-
cle, however, is feeling the pinch of the high cost of porting, and

has started to reduce the number of supported platforms.
This technical/business portability architecture has served Ora-

cle well over the past two decades. But what about companies in the
embedded database market? The model breaks down on the busi-
ness side. Embedded database companies have revenue bases that
are an order of magnitude smaller than Oracle’s. The result is that
these companies are forced to select a small number of platforms to
support. They all support Wintel and possibly two to three others.

On the other side of the fence, customers are faced with a large
installation matrix. They’re required to purchase, install and main-
tain particular versions of Oracle with particular hardware and oper-
ating system versions. This must all be done ahead of time, before
deployment. Should computers be added to a distributed system,
more installations and configurations must be done.

Enter Java and “anonymous deployment.”
With Java’s technical/business architecture,
the dynamics of an embedded database com-
pany can change – and has changed in the
case of PointBase. At PointBase we don’t
employ a single porting engineer, yet we have
more porting engineers than Oracle. Our
porting engineers are on the payrolls of such
companies as Sun, Microsoft, IBM and Novell.
With our small history (a year plus) and small
engineering staff our product has been used
by our customers on more platforms than
Oracle supported in its first five years.

From our customers’ point of view, the
predeployment step of buying and installing a
platform-specific product is completely elimi-
nated. Our customers can deploy their data

and data management through the Internet to an anonymous plat-
form. This, after all, is what many have chosen Java for.

The old model of portability creates barriers to an emerging
multiplatform world in terms of both cost and time to market. As
new platforms are created, data management solutions for those
platforms need to be made available – rapidly. Those developing e-
commerce servers know they’re faced with many viable server plat-
forms including Windows/NT, Solaris, Netware, OS/400 and Linux.
People developing mobile applications are developing for Wintel
laptops today, but expect to be able to move these applications to
future mobile platforms. The emerging world of Internet devices
and Web appliances will be inherently multiplatform. As Java appli-
cations are created for these platforms, the data management solu-
tion needs to be as anonymously deployable as the Java applica-
tions themselves.

About the Author
Bruce Scott, president, CEO and founder of PointBase, is a leader in the area
of enterprise and embedded database architecture and product development.
A cofounder of Oracle in 1977, Bruce cofounded Gupta Technology in 1984,
pioneering the notion of the small footprint database server for Intel-based
platforms.

Anonymous Deployment vs Portability
With Java’s technical/business architecture, the
dynamics of an embedded database can change

I M H O

by Bruce Scott

“People developing

mobile applications

today expect to be able to

move these applications

to future mobile

platforms”

33JUNE 1999

Object Domain
Systems

www.objectdomain.com/odtrial

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

34 JUNE 1999

KL G

www.klgroup.c

See JDJ Spe
http://www.sys-con.com/ja

35JUNE 1999

roup

com/jclass/look

ecial Offer at:
ava/specialsoftheweek.html

36 JUNE 1999

When Java first came out, one of its
acknowledged weaknesses was the lack of an
advanced set of GUI components. This was
especially evident in the text controls, which
lacked many of the advanced features found in
the native text controls of operating systems
such as Windows. With the release of the Java
Foundation Classes (also known as Swing),
Java finally had a robust and sophisticated col-
lection of controls, especially text controls.

With this in mind, this series of articles will
show how to build a simple syntax, with
emphasis on text control using Swing’s Model
View Controller (MVC) architecture and
JTextPane. The control will handle keyword
highlighting by changing the font style to a
bold format. It will handle both single-line
(“//…”) and multiline (“/*…*/”) comments by
changing the style to an italic format and the
font color to a user-defined one. Strings (any
text between quotes) and numbers will also
be formatted by having their respective font
colors changed to user-defined ones. The
control will support all of the Java language
keywords as a default, but will allow the user
to change or completely replace the keywords
with their own.

Explanation of MVC in Swing
Document Model

The Swing set of GUI components provides
a complete package of components, classes
and interfaces that rely heavily on the Model
View Controller architecture. With this in
mind, I’ve provided the following brief
overview of what MVC means to Swing, espe-
cially the Swing text components.

Model View Controller in Simple Terms
The Model View Controller architecture is

a commonly used OO technique to distinguish
the data, the rendering of the data and user
interaction with the rendering and the data. In
MVC the Model holds all the data necessary
for the View, the View is responsible for decid-
ing how the data in the Model is presented
and the Controller is used to handle events
and processing between the View and Model
(see Figure 1).

How does the Model View Controller apply
to Swing’s text class, specifically the Docu-
ment classes?

Swing uses a condensed version called UI
delegate in which the Controller and View are

combined into one, with the Model remaining
separate, as shone in Figure 2. In this article
we’re concerned primarily with implementa-
tion of a Model, specifically the Document
model used throughout the Swing text controls.

Pros and Cons of Using Swing’s Model
View Controller Architecture

Using MVC throughout the Swing class
hierarchy has allowed Sun Microsystems to
create a very sophisticated architecture that
allows all sorts of advanced customizations.
The only downside is that the complexity of
performing even simple tasks with the con-
trols tends to intimidate newcomers to the
Swing style of doing things. Hopefully, these
articles will clear up at least part of the con-
fusion in working with the text controls.

The Document
In Swing, as I mentioned before, the Docu-

ment serves as the Model in the MVC archi-
tecture. So what is the Document? It’s an
interface describing the core functions of the
Model and has several implementations
already present in the Swing text package: the
AbstractDocument class, the PlainDocument
class and the DefaultStyledDocument class.

Every Document is composed of a series of
elements arranged in hierarchical order. These
elements, which are represented by the Element
interface (part of the com.sun.java.swing.text
package in JDK 1.1.x), serve many purposes.
They break the Document into logical sections
and can tell you where you are within the Docu-
ment. In our case the primary use of the ele-
ments is to determine our place quickly so we
only have to deal with the related text without
having to sort through all of the text all of the
time.

While the Element interface is great for
navigation, it doesn’t tell you much about how
it looks. This is done by the AttributeSet inter-
face. The AttributeSet also has a more com-
plex descendant called the MutableAttribute-
Set interface, which allows us to modify the
attribute rather than merely access informa-
tion from it. The default implementation of
these interfaces is provided in the SimpleAt-
tributeSet class. Using this class you can mod-
ify font size and color, italic and bold styles
and many other characteristics.

These two classes now enable us to deter-
mine our position, get a representative chunk
of text and make modifications to the text
attributes accordingly.

Let’s take a look at how we could get our
position using the Element interface. Assume
that we’ve been provided with a variable (int
offs) that represents the current offset in all
the text, not just the chunk in the Element.
The “this” variable points to a Document
implementation.

Element element =
this.getParagraphElement(offs);

int elementStartOffs =
element.getStartOffset();

int elementTextLen =
element.getEndOffset() -
element.getStartOffset();

String elementText = this.getText
(elementStartOffs, elementTextLen);

The elementText variable now represents
only the text within the bounds of our partic-
ular element. This eliminates the need to have
to parse through all the text. To better explain
this, let’s say you’re chugging along, typing
merrily away. As long as your cursor is always
at the last character of text, backing up and
determining where the next space is (which
would signify a word break) is pretty easy. But
what happens if you suddenly decide to go
back and place the cursor in the middle of all
the text you just typed? How do you deter-
mine where you are without processing
through all the text? This is where using the
Elements, as we’re doing above, saves us.

Modifying the attributes of a select portion
of text is also easy, as in our next example:

package MyTest;

import |java.util.*;

public class TestClass {
 int i = 0;

JDJ WIDGET FACTORY

Text Controls by Swing
Using Model View Controller architecture

by Jim Crafton

Figure 1: The Model View Controller

37JUNE 1999

OpenLink Software

www.openlinksw.com/virtuoso

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

38 JUNE 1999

Now let’s say the elementText variable we
mentioned above contains the text “import
java.util.*;” (as in preceding code). The “this”
variable references an instance of some
DefaultStyledDocument object.

SimpleAttributeSet bold =
new SimpleAttributeSet();

StyleConstants.setBold(bold, true);
String word = elementText.subString(0,6);
this.remove(offs - word.length(),

word.length());
this.insertString(offs - word.length(),

word, bold);

First we create the attribute by using a new
instance of the SimpleAttributeSet. Using the
StyleConstants setBold method will modify
our new attribute variable. Notice that we
have to remove the text we’re about to change
with the Document’s remove method. Then a
call is sent to insertString, passing in the posi-
tion, the string and the current attribute set-
tings. By doing this we can change the for-
matting of the text “import” to a bold font:

Now that we know how to work with and
modify the Document’s text, let’s look at how
we’re actually going to go about setting up our
syntax highlighting. For simplicity’s sake I
chose to create a new class called CodeDocu-
ment that extends the DefaultStyledDocu-
ment. As I mentioned earlier, three classes are
already coded for us in Swing: the Abstract-
Document, which is the base class for all the
Swing Document implementations; the Plain-
Document for straight text handling; and the
DefaultStyledDocument, which handles all the
fancy text formatting commonly found in RTF
or HTML files. Since we’ll need the text for-
matting attributes, it was a no-brainer to
decide to extend DefaultStyledDocument (see
code above).

Capturing text input turned out to be quite
easy: we just override the insertString (int
offs, String str, AttributeSet a) method and
place our own functionality here. The insert-
String method is called whenever any kind of

text is entered, either by keystroke (making
the str value just one character) or by pro-
grammatically adding text to the Document.
To support this added functionality we’ll add
some attributes to our CodeDocument class.
We’ll need to keep track of the current word
that we’re on, so we’ll have an attribute
called “word” of type String. We’ll also keep
track of the current position, modifying it
each time we enter our overridden insert-
String() method. We’ll call this attribute cur-
rentPos of type int. We could use an attribute
to hold the bold settings so we don’t have to
keep creating one. We could also use an
attribute of type Vector to hold all the key-
words. We’ll call this variable “keywords.”

Now the class looks something like what is
contained in Listing 1.

We have two functions in this new class: the
overridden insertString and a new function
called checkForKeyword. The former is called
every keystroke, or any other time text is
inserted. The first thing we do is call the super-
class’s insertString function to ensure that the
string is properly put into the Document’s text.
We then see whether the string is one charac-
ter (most likely from a keystroke) or multiple
characters (which we won’t handle at the
moment). If it’s one character, we get that char-
acter and compare it: any character that signi-
fies a word break (defined as a space, “{“, “}”,
“(“, “)”, carriage return or “;”) will cause us to
call the checkForKeyword function.

This function basically pulls off the current
word from our current position (stored in the
currentPos attribute) and compares it with
the list of keywords that the class has. If a
match is found, the word is removed and
replaced with the same word, but with bold-

style formatting. Walking through the function,
the first thing it does is set a local variable
called “offs” equal to the current position. From
this position, as discussed above, we can get
the current element text, based on the ele-
ment’s offsets (using the element.getStartOff-
set() and element.GetEndOffset() functions). If
the text retrieved has a zero length, we can safe-
ly return from the function.

The next chunk of code handles the prob-
lem of typing some text for a while and then
moves the cursor back to someplace in the
middle of the newly entered text. If this is the
case, the offs variable needs to be translated
to match up properly with the array of char-
acters in the element text. With this taken
care of, we’re ready to start walking back-
wards through the text. Backwards, you say?
Yes, because the offs variable represents the
last typed position, which would be at the end
of a word. So we set up a loop and continue
to move back from our position until we hit a
delimiter (defined as “{“, “}”, “(“, “)” or a
space). Now we have a word, and we can com-
pare it against our list of keywords using the
Vector class’s contains() function.

Well, we’re nowhere near being done, but
we have the main outline of a class ready, we
know the methods we need to override, and we
know the key concepts we need to get the job
done. In the next article we’ll see how this all
comes together in a working Document class
that we can then plug into a JTextPane.

References
1. Topley, K. (1998). Core Java Foundation
Classes. Prentice Hall PTR. Englewood Cliffs,
NJ: Prentice-Hall.
2. Eckstein, R., Loy, R., and Wood, D. (1998).
Java Swing. O’Reilly and Associates.

About the Author
Jim Crafton is a staff consultant with Computer
Sciences Corporation, where he specializes in
object-oriented development. He also develops
advanced graphics software for Windows and the
BeOS. He can be reached at ddiego@one.net and
has a Web site at http://w3.one.net/~ddiego/.

package MyTest;

import |java.util.*;

public class TestClass {
 int i = 0;

ddiego@one.net

import com.sun.java.swing.*;
import com.sun.java.swing.text.*;
import java.util.*;
import java.awt.*;
public class CodeDocument extends DefaultStyledDocument{

private String word = "";
private SimpleAttributeSet bold = new SimpleAttributeSet();
private SimpleAttributeSet normal = new SimpleAttributeSet();
private int currentPos = 0;
private Vector keywords = new Vector();
public CodeDocument() {

//set the bold attribute
StyleConstants.setBold(bold, true);
}

private void checkForKeyword(){
int offs = this.currentPos;
Element element = this.getParagraphElement(offs);
String elementText = "";
try{

//this gets our chuck of current text for the element we’re on
elementText = this.getText(element.getStartOffset(),

element.getEndOffset() - element.getStartOffset());
}
catch(Exception ex){

//whoops!
System.out.println("no text");

}
int strLen = elementText.length();
if (strLen == 0) {return;}

Listing 1:

▼▼ FULL CODE LISTING BELOW ▼▼

Figure 2: The Swing UI delegate relationship

39JUNE 1999

cyrus intersoft, inc.

www.cyrusintersoft.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

40 JUNE 1999

int i = 0;
if (element.getStartOffset() > 0){

// translates backward if neccessary
offs = offs - element.getStartOffset();
}

if ((offs >= 0) && (offs <= strLen-1)){
i = offs;
while (i >0){

// the while loop walks back until we hit a delimiter
i--;
char charAt = elementText.charAt(i);
if ((charAt == ' ') | (i == 0) | (charAt =='(') |

(charAt ==')') |
(charAt == '{') | (charAt == '}')){

// if i == 0 then we're at the begininng
if(i != 0){

i++;
}
word = elementText.substring(i, offs);//skip the period
String s = word.trim().toLowerCase();

// this is what actually checks for a matching keyword
if (keywords.contains(s)){

try{
// remove the old word and formatting

this.remove(currentPos - word.length(), word.length());

// replace it with the same word, but new formatting
// we MUST call the super class insertString method here,
// otherwise we *would end up in an infinite loop !!!!!

super.insertString(currentPos - word.length(), word, bold);
}
catch (Exception ex){

ex.printStackTrace();
}

}
break;

}
}

}
}
public void insertString(int offs,

String str,
AttributeSet a) throws BadLocationException{

if (offs < 0){
return;

}
currentPos = offs;
char strChar;
super.insertString(offs, str, normal);
int strLen = str.length();
if (strLen > 1){
}
else{

strChar = str.charAt(0);
switch (strChar){

case ('{'):case ('}'):case (' '): case('\n'):
case ('('):case (')'):case (';'):case ('.'):{

checkForKeyword();
wordStart = offs;

}
break;

} //end switch
}

}
public Vector getKeywords(){

return this.keywords;
}
public void setKeywords(Vector aKeywordList){

if (aKeywordList != null){
this.keywords = aKeywordList;

}
}

FINDaHOST.com
www.findahost.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

The code listing for
this article can also be located at
www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

41JUNE 1999

SL Corporation

www.sl.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

42 JUNE 1999

A
Q

A
Q

A
Q

SYS-CON RADIOSYS-CON RADIOINTERVIEW S

YS
-CON

R
A

D
IO

w
w

w
.s

ys-con.com

Instatiations

www.instantiations.com
See JDJ Special Offer at:

http://www.sys-con.com/java/specialsoftheweek.html

with Steve Henning of Blue Lobster Software
JDJ: Can you give us a little
background on Blue Lobster
and then jump into Stingray
and Mako?
Henning: Blue Lobster was
started to help people access
and leverage data that is resi-
dent on their mainframes in
the Web world. Where did we

get that name? Blue Lobster’s founders were from IBM, Big
Blue…the Lobster is a visual metaphor for the main-
frame…both the mainframe and the lobster have a forbid-
ding outer shell yet there is tasty data in the middle. Blue Lob-
ster is different from traditional Web and host solutions in that
we are really concentrated on helping people build e-com-
merce and online customer support applications.

Stingray handles terminal-based applications on the
mainframe that you can get only through the 32/70 presen-
tation layer. Stingray produces Java objects that encapsulate
screen navigation, and getting and setting of data with the
mainframe applications, and so you get reusable objects that
can be hosted on the server side. And they effectively separate
the business logic from the presentation logic for use in appli-
cations in e-commerce.

Mako handles different types of applications on the main-
frame. Some applications actually allow you to go directly to

the transaction rather than through the presentation layer of
the application. If you look at a typical CICS application on the
mainframe, it has a 32/70 presentation layer, but it’s integrat-
ed with a number of underlying CICS transactions that can be
accessed directly through an API like EXCI or ECI. These appli-
cations are really hard to Web-enable because traditionally the
applications themselves, the transactions, and the data input
and output format are written in COBOL. What Mako does is
give developers a COBOL expert system that automatically
maps transactions and the associated input and output data,
which is typically stored in COBOL paper books, directly to a
Java representation. We also have a server component that
can be used at runtime that will allow the mapping to take
place between COBOL and Java. All our products are built as
100% Pure Java and produce JavaBeans that make it really
quick to get your applications out on the Web.

JDJ: Do Mako and Stingray work together?
Henning: You can use the objects that come from Mako and
Stingray together. Typically, if you look at an e-commerce
application, you’re going to have people who want to cull
from many mainframe data sources so you might have a cou-
ple of Stingray objects that are encapsulating transactions with
a terminal base application and then you might also use the
Mako product to encapsulate some direct access to CICS
transactions. You write some new business logic on the serv-

er to build the commerce application that uses this data. You
might even incorporate some middle-tier data sources like an
SQL server database. So they work very well together.

JDJ: Can you give us a real-time example of how it is being
used and maybe tell us who is using it?
Henning: Davis Vision built an online e-commerce applica-
tion for their subscribers and member doctors to purchase
glasses, contact lenses, etc. They wanted to streamline that
process and put it on the Web so they could give better ser-
vice. They incorporated Stingray to record transactions with
the CICS applications on their mainframe. When they did that
they got Java Legacy business objects that would represent
these transactions and put them through a Java registration
process to create COM objects. When their members access
this application, they are given an active server page through
a Microsoft Web server that allows them to get to the main
business logic of the application. Requests for services and
orders for glasses are stored and forwarded to the Stingray-
generated Legacy business objects and then they interact with
the mainframe application directly, storing the data onto the
mainframe databases and the results are passed back through
Stingray and served up as straight HTML to the consumers of
the services. It has been a really successful architecture for
them, and it could only have been built with a product like
Stingray that supports server-side applications.

Steve Henning
Vice President, Marketing

43JUNE 1999

Tidestone Technology

Tidestone is offering a FULL
trial version of “Formula One”
their award-winning Pure Java

spreadsheet software

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

44 JUNE 1999

Micr

msdn.microsof
See JDJ Spe

http://www.sys-con.com/ja

45JUNE 1999

rosoft

ft.com/visualc
ecial Offer at:
ava/specialsoftheweek.html

46 JUNE 1999

Multiplatform code isn’t a new occurrence
or concept in software development. C and
even C++ are cross-platform languages if you
only use the standard libraries and refrain
from using the platform-specific options
offered by your compiler vendor. A recompile
is required, but the source code can be made
to work without modification. Other languages
are also available across platforms, including
scripting languages like REXX, PERL and
Python; they allow us to skip the recompiled,
generalized languages like BASIC and COBOL,
and other small-following or specialized lan-
guages like Forth. So what does Java offer that
we don’t get from these other tools? Further-
more, what problems do we, as multiplatform
developers, still need to solve? This article
addresses these questions and presents a sim-
ple framework for developing multiplatform
applications in Java.

To understand what Java gives us, we must
first ask the question: “What are the traditional
problems with writing cross-platform code
using C or other languages?” I’ll divide these
issues into a few broad categories. The first and
most obvious (at least for people with desktop
PC backgrounds) is the user interface. Along
with the workspace GUI issues, I’ll also lump in
other less visible “interfaces,” often those
between the application and the system that,
while not presented directly to the end user,
often differ across platforms. Some possible
examples of this might be text formats (ASCII
versus EBCDIC), permissions models (file or
process permissions, etc.) or security models.
Sometimes it’s difficult to spot the assumptions
you’ve made about all your application’s inter-
faces to the user and the system.

The next problem is the availability of com-
piler implementations and third-party libraries
used to supplement the functionality of the
standard libraries, with features like database
support and additional ADT implementations.

Finally, there is testing, the bane of multi-
platform development. The testing effort for
standalone applications on different operating
systems is fairly linear. However, when you
add distributed application models, the size of
the test matrix grows geometrically, as do the
number of possible issues related to interop-
erability, latency and other factors.

Today: Multiplatform Development
in Java vs Other Platforms

So how does Java assist with these obsta-
cles? It certainly helps that the UI offers a uni-
form event-based GUI model with which we
can develop applications having a cross-plat-
form consistency. While there have been some
complaints about the performance and/or look
and feel of Java apps relative to those with plat-
form-native interfaces, we’ve begun to see
applications using the newest Java UI technol-
ogy, with outstanding results.

Regarding compiler availability, Java deliv-
ers a standard compiler implementation that’s
available across most common development
platforms. Plus, Java has recently introduced
access to the source for creating modifications
and implementations on new platforms. Differ-
ing C++ implementations have haunted devel-
opers for years. Even differing implementa-
tions on the same platform have caused prob-
lems. (Witness the VC++/Borland C++ incom-
patible implementations that persisted on Win-
dows.) The consistency of Java compilers also
helps significantly with the use of third-party
libraries, ensuring that the chosen library will
at least build successfully on your platform(s).

That’s the good news.
What about the areas where Java doesn’t

help – and may even hurt us? The foremost
problem with multiplatform application devel-
opment in Java is testing. It adds another com-
plexity multiplier to the test matrix on virtual
machine releases and, worse yet, multiple
implementations of each release on some plat-
forms. Further complexity is layered on by
browser VMs (especially if parts of the appli-
cation can run inside the browser and others
outside) and browsers with plug-in VMs. With
layer upon layer of multiplicative complexity
from VM variations, the time required for
testing can more than double on Java pro-
jects compared to the time using more tradi-
tional development tools. Some development
efforts have seen testing resources jump
from 20 to 50% and higher in the transition to
Java. The only real solution is more compati-
ble VM implementations. We can only hope
that Sun, IBM and Microsoft hear our pleas:
“Make the virtual machines more compati-
ble!” Fortunately, progress is being made on

this front, albeit more slowly than we’d like.
Putting aside the testing/VM compatibility

issue, one primary obstacle remains: the sys-
tem interfaces for which Java doesn’t directly
provide an abstraction layer. While it provides
strong assistance with application GUIs via
AWT and/or JFC, Java doesn’t provide pack-
aged solutions to many system interface prob-
lems. More are being tackled every day in new
APIs and through Sun’s new Java Extensions
model, e.g., the Java Communication API for
serial communication or the Java Cryptogra-
phy Extension. This is a slow process, though,
and there will always be interfaces that aren’t
covered. The solution here is simple (and cer-
tainly not new), although seldom well executed
– provide the abstraction layer for all nontriv-
ial interfaces to the system that supports plug-
gable platform-specific implementations.

Platform Pack Solution
At InstallShield our products have to inter-

face to the system using virtually every platform-
specific interface in the spectrum, solving many
of the problems that aren’t directly addressed by
Java. The installer has to support almost every-
thing, because it must be able to set up a wide
range of applications, from a simple text editor
to an application server. In aggregate, the set of
applications using our installer utilizes virtually
every platform-specific service – system-event
logging, security and permissions, the file sys-
tem and on and on ad infinitum.

Some may ask why we should be using plat-
form-specific implementations rather than sim-
ply providing cross-platform Java implementa-
tions. First of all, it isn’t always possible. For
example, the creation of icons in desktop ser-
vices: though it’s often essential for rendering
an application usable, Java doesn’t directly sup-
port it, and there’s no cross-platform solution.

Second, the use of native services is usual-
ly necessary for applications to interface suc-
cessfully to the existing IT environment. Many
new applications must work alongside existing
native code, and to do so they often use the
same system services as the older packages.
Additionally, it’s a great benefit for the system
administrator to be able to administer applica-
tions using the standard tools for the platform.
To accomplish this, the application must inter-
face directly to those native tools. Of course,
while it’s desirable to leverage platform-specif-
ic features where possible, we also need to sup-
port platforms for which we haven’t created
platform-specific code, or for which any partic-

Multiplatform Application
Design with Java

An architecture for multiplatform development

JAVA PROGRAMMING TECHNIQUES

by Jim Wright

47JUNE 1999

Object International

www.oi.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

48 JUNE 1999

ular feature is simply not implemented.
When attempting to solve platform-specific

problems, our natural tendency is to simply
make it work with the platform we’re targeting
using JNI (this frequently happens when tar-
geting Windows on the client side). While this
handily solves the problem for each platform
on a “one-at-a-time” basis, it gives up the
“write once, run anywhere” promise of Java.

To fully realize this vision, what’s needed is
a robust and flexible architecture for imple-
menting a set of platform-specific services in a
cross-platform application, while also main-
taining gracefully degraded performance on
other systems. We call our solution “Platform
Packs.” For the most part, it follows the same
pattern as Java’s existing interfaces to plat-
form services – the separation of the definition
of functionality in cross-platform Java classes
from the implementation of that functionality
in platform-specific VMs.

The basic idea of the model is the creation
and use of a set of named system services for
the implementation of platform-specific items.
At application startup, a “Service Manager”
examines the system properties to determine
the current running platform; then it finds an
implementer for each service for that platform
and performs any necessary startup for the
service implementers, usually launching a ser-
vice-implementer application, either one for
each service or one for all of them.

Why a separate application? First, these plat-
form-specific services are usually in a native
executable generated with C/C++ or another
native development tool and native libraries.
Second, even if the service implementer is a set
of Java classes, you may want to run the imple-
menter on a separate machine or in a security
context separate from that of the Java VM.

What if a service implementer for a given
service doesn’t exist for the current platform?
The solution is to create a platform-neutral
implementation for each service. When an
unknown platform is encountered or an imple-
mentation of any particular service doesn’t
exist for the current platform, the platform-neu-
tral service implementers are used. For some
services, a platform-neutral implementation
won’t be available or obvious. However, in
these cases the developer simply creates a non-
functional shell service and lets the caller know
that the service isn’t implemented on any calls.

One example of a service requiring this
approach is desktop services – creating icons
and such. There’s no platform-neutral way of
doing this (yes, I can hear your screams, CDE
fans!), so the platform-neutral desktop service
must simply return an E_SERVICE_NOT_IMPL
error in any call to the service.

The following is a list, by no means all-
inclusive, of other services you’ll need to think
about in your application:
• Security (accommodation of the platform

and/or application user model)
• Command shell and environment ser-

vices
• File system access (this may be less trivial

then you think – file permission models dif-
fer, text file implementations differ, and
some platforms may not even directly sup-
port files or paths in the way you’re used to
on Windows or UNIX)

• Permissions (which may or may not need
to be separated from the file system or secu-
rity models depending on the needs of the
application)

• Registry/VPD (Vital Product Data) ser-
vices (product install registration, etc.)

• System event logging

Conclusion
The core of this strategy is simply to imple-

ment as much as possible in Java, including a
pure Java implementation of each service area
to form a platform-neutral pack. Additional
platform-specific functionality can then be
implemented in platform-specific native code
on a service-by-service basis and activated at
application startup by the service manager.
Keep in mind that you may not require all ser-
vices to be implemented for each pack. It’s
essential that the implementer of the Platform
Pack for each environment be able to pick and
choose when to use the platform-neutral
implementation and when to use native imple-
mentation. An example from our product is the
registry, which uses the platform-neutral
implementation on Solaris and the native
implementation on Windows, which maps
directly to the Windows registry.

This allows use of the product across vir-

tually all platforms, but with gracefully degrad-
ed functionality on those platforms for which
no native functionality Platform Pack exists.
Additionally, if your service manager allows
the detection and creation of the set of avail-
able services at runtime, new applications
built on the existing framework will be able to
request and utilize new services without
requiring modification to the service manager
or any existing services.

I hope this discussion has provided a useful
look at a successful strategy for the implemen-
tation of multiplatform applications in Java.
Java clearly solves some of the biggest prob-
lems with development for heterogeneous sys-
tems, assisting us with consistent compilers,
class libraries, some system interfaces and UI.
While it doesn’t solve all of our problems, a lit-
tle forethought in the design of flexible system
interfaces can greatly ease the burden of tran-
sitioning applications to new systems.

About the Author
Jim Wright lives in Santa Cruz and serves as the
general manager of Java product development and
director of developer relations at InstallShield
Software Corporation. A consultant before joining
InstallShield, Jim has worked in the areas of
Windows application development, software
installation, networked and widely distributed
applications, and encryption systems. Jim can be
reached at jamesw@installshield.com.

1. The application initializes the
Service Manager.

2. The Service Manager discov-
ers the platform through the
system properties.

3. The Service Manager initial-
izes each service and the ser-
vice implementers 1 ..n for the
platform. For any service not
implemented explicitly for the
platform, it initializes the
implementer from the Platform
Neutral Pack.

4. The Service Manager adds

services 1..n to the available
services list, and returns from
the initialization sequence.

5. The application requests the
use of service x.

6. The Service manager hands
back the service object for
service x.

7. The application requests
action y from the service x.

8. The service x calls the service
implementer, either for plat-
form x or the platform-neutral
implementer (the application

doesn’t know or care) to per-
form the requested action. The
services may also call each
other in performing a given
action, requesting other ser-
vices from the Service Manag-
er using the same method as
in the Application Core.

9. The service implementer
returns a success/error code,
which is then passed back to
the application that requested
action.

Service Manager

Application Core

Service n

Service
Implementer
Service n,
Platform x

Service
Implementer
Service 2,

Platform Neutral

Service
Implementer
Service 1,
Platform x

Service
Implementer
Service 1,

Platform Neutral
(not loaded)

Service 2Service 1

Action Sequence for an Application Using the Platform Pack Model

jamesw@installshield.com

49JUNE 1999

Borland

www.borland.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

50 JUNE 1999

In early 1998, Bruce Scott, one of the
cofounders of both Oracle Corporation and
Gupta Technology, opened the doors of his
fourth start-up company. With this one, Point-
Base, Scott returned to his database roots with
a simple but ambitious business plan: develop
the next generation of database software for
managing data anywhere on the Net. Specifi-
cally, the database should serve applications
at three levels in the Net and coexist optimally
with major enterprise-class data management
systems such as Oracle, Sybase and DB2. Tar-
geted were the server level, typically hosting e-
commerce applications; the client level, with
applications for mobile users; and the Internet
appliance level, for devices such as Web-based
PDAs (personal digital assistants) and set-top
boxes.

A little over a year later, PointBase is well
on its way to realizing that plan with the
release of version 2.1 of their Server and
Mobile Editions in May and their recent deci-
sion to make free demo versions available from
their Web site at www.pointbase.com.

PointBase’s database products are built with
100% Pure Java to take advantage of Java’s open
platform architecture and Internet readiness.
Supporting Java and CORBA/DCOM standards,
PointBase has “drop in” compatibility with all
major Java application development environ-
ments, application servers and e-commerce
servers. Its self-management capabilities ensure
reliable operations, a requirement of software
that will be distributed across the Net.

With its new products, PointBase is putting
unprecedented data-processing power in a
small, portable package – exactly what is need-
ed by the company’s targeted applications.
PointBase offers extremely low-cost owner-
ship through innovations in data integration,
ease of use, extensibility and adherence to
industry standards. Because of PointBase’s
compatibility with corporate databases and
seamless data synchronization capabilities,
PointBase can extend a central repository of
data out to millions of mobile workers via dial-
up, network and wireless cellular connections
over the Net. And because of its exceptionally
small footprint (requiring as little as 270 KB of

RAM), PointBase is particularly useful for
applications such as Internet catalogs, which
are structured to deliver fully integrated pack-
ages of data and data management capabilities
in one download.

As noted, PointBase is led by founder, pres-
ident and chief executive Bruce Scott, a pio-
neer in the database industry and a leader in
the area of enterprise and embedded database
architecture and product development.
Indeed, Scott “wrote the book” on the first iter-
ations of SQL, which has become the industry
standard for powerful database applications.
Along with Larry Ellison, Bob Miner and Ed
Oates, Bruce cofounded Oracle in 1997 and
authored more than half of Oracle’s first-gener-
ation products.

After Oracle, Scott cofounded Gupta Tech-
nology (later renamed Centura Software),
where he came up with the notion of the small-
footprint workgroup server for the Intel-based
platform, and delivered to the marketplace
Gupta’s SQLBase – the first database to target
the needs of workgroups and mobile database
applications.

During the first few months of PointBase’s
operation, Scott garnered industrywide recog-
nition for its ambitious goals. Scott is joined by
cofounder Jeff Richey, who has a track record
of developing world-class databases, including
development work on Oracle, DB/2 and
Sybase. Shortly after Richey was introduced to
Scott’s plan, he left IBM, where he was slated to
manage a major overhaul of DB/2, to join Scott
at PointBase.

In November 1998, PointBase received Red
Herring magazine’s “Catch of the Season
Award.” The honor recognizes PointBase for its
“experienced management team, strong focus
on a viable long-term market and excellent
Java-based technology.” In the March 1999 edi-
tion, Red Herring featured PointBase in its reg-
ular “One to Watch” feature, again for its inno-
vative approach in the database market.

Managing Data Anywhere
on the Net

The arrival of the Internet has led to the
emergence of a dramatically new networked

computing environment. Unlike the closed
architectures of the past, networks today can
use the Internet’s open standards to link dif-
ferent levels of servers, workstations, devices
and back-end systems.

Today’s databases, however, have yet to
leverage the potential of the Internet to
extend the power of distributed data process-
ing to new levels. Client/server systems have
made the transition to the Internet, but they
still rely on closed technology and legacy
code, drawbacks that limit their effectiveness.
And the databases so far available for the
Internet lack the open architecture, platform
independence and standards support to fully
enable distributed computing.

Scott remembers when porting relational
databases onto every platform was a night-
mare of epic proportions – until Java sur-
faced. “Now those issues are receding….”
PointBase takes full advantage of the distrib-
utive power of the Internet and the cross-
platform independence of Java to provide
anonymous deployment, a term PointBase
has trademarked to describe the feature of
being able to download their database onto
any platform and have it run flawlessly as
long as Java is supported on the target
machine.

“It wasn’t that long ago that naysayers
claimed it was impossible to create a set of
standards and write software that could be
used on any platform,” says Scott. “Well, we’re
here. We’re now in a position to deliver data
processing power to all levels of the organiza-
tion over the Internet.”

Applications Across the Board and
Across the Net

E-commerce systems are a phenomenal
growth area, but databases haven’t kept pace
with their functionality. To support Web-
based e-commerce, a database – just like the
e-commerce system it supports – must pro-
vide:
1. Seamless integration with a variety of enter-

prise-class databases
2. Platform independence to enable customers

to leverage their existing infrastructure
3. Distributed object computing with support

for JDBC
4. Adaptive management for worry-free opera-

tions
5. The ability to support local updates to

avoid direct exposure of back-end systems
to the Web.

First Look at
PointBase, Inc.

A NEW JAVA STARTUP

by Scott Davison

A database that can be packaged with data and
application logic and distributed over the Net

51JUNE 1999

Intuitive Systems, Inc

Intuitive Systems, Inc. is
offering a FREE download

of Optimizeit! 3.0 Professional
demo version.

Note: Please type
“JDJ Coupon”

in the comments box.

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

52 JUNE 1999

The Objec

www.object

See JDJ Spe
http://www.sys-con.com/ja

53JUNE 1999

ct People

tpeople.com

ecial Offer at:
ava/specialsoftheweek.html

54 JUNE 1999

PointBase is the only multiuser, pure Java
database that provides this set of features.

Projections of the number of mobile work-
ers indicate that somewhere between 60 mil-
lion and 108 million of them will participate in
the workforce by the end of 2001. Whatever the
actual number turns out to be, one thing is cer-
tain: there will be a lot of them. As this increas-
ingly mobile workforce takes their applications
on the road, there is a growing disconnect
between the data and applications they leave
behind in the enterprise and the versions they
carry in their laptops. Databases that support
mobile applications must deal with these
issues, and in addition need to provide SQL
compatibility and the ability to reconcile data
bidirectionally with the corporate database.
Moreover, to be mobile, an application must
have a small footprint; however, to be trusted
with mission-critical functions, a mobile appli-
cation must have a level of functionality that
complements that of the prime-time enterprise
applications. In addition, ease of use and a high
degree of automated, worry-free maintenance
are must-haves; mobile applications must not
require a technical database administrator to
ensure continual operation. PointBase meets
these requirements.

Internet appliances share many of the
same requirements of e-commerce systems
and mobile applications – in fact, they are
mobile, or remote, computing devices them-
selves, with limited functionality. To begin
with, software for such appliances – Internet-
connected PDAs, Web/cable set-top boxes,

even devices such as car navigation systems
and telecommunications hubs and switches
– requires an exceptionally small footprint.
Such applications must be self-managing,
provide zero or near-zero administration and
be easily deployed on a wide range of plat-
forms. PointBase meets these requirements
too.

Product Attributes
PointBase products are certified for Apple,

HP-UX, IBM (AS/400, RS6000 AIX and OS/390),
Linux, Windows 95/98/NT, Novell NetWare and
Sun Solaris. They support data replication to
and from Oracle, Sybase, IBM DB/2 (AS/400,
OS/390, UDB), Microsoft SQL Server and Lotus
Notes. DataMirror, an industry leader in data
replication, data extraction and data transfor-
mation, provides the critical components for
the PointBase heterogeneous replication tech-
nology. This compatibility means customers
can leverage their investments in existing
technology, and can painlessly scale their
database solutions with the growth of their
business.

PointBase products also support the
CORBA/DCOM standards for distributed
object computing, the JDBC standard for Java
database connectivity and Internet standards
including FTP and HTTP. And PointBase prod-
ucts are SQL compliant, with native support
for DB/2 and Oracle SQL statement sets.

PointBase products can be extended easi-
ly on Java servers. In the new world of Java
development, application developers expect

to extend, customize and specialize products
they use through the magic of Java object-ori-
ented programming. PointBase meets this
expectation by providing a fully extensible
database to allow for customer-oriented cus-
tomization. Gone are the days of one-size-fits-
all databases.

PointBase Server Edition is the first multi-
user Java database available in the market. It
is well suited to e-commerce applications and
Java servers. In addition to the features
above, it provides:
• Multiuser concurrent use: Supports

unlimited users with concurrency manage-
ment and row-level locking.

• Multiuser security: Provides server-based
multiuser security and an open naming and
directory framework. Encryption is fully
supported.

PointBase Mobile Edition is a multithread-
ed single-user database designed for mobile
clients and Web-based appliances. With its
small footprint, the Mobile Edition doesn’t
take up a lot of space on the hard disk, as lit-
tle as 270 KB of RAM – next to nothing when
compared to the competition.

About the Author
Scott Davison is one of the founding editors of
SYS-CON Publications, Inc., the publisher of Java
Developer’s Journal. Scott can be reached at
scott@sys-con.com.

Corporate
Database
System

Middle Tier
Application
Servers

Oracle
IBM DB2 (S/390, AS/4000)
Sybase
MS SQL Server

Application
Server

Standalone
Server

Mobile Clients
and Devices

PDAs

scott@sys-con.com

55JUNE 1999

Developmentor

www.developmentor.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

Web-development of every kind is
one focus of Sybase PowerJ 3.0 (see

Figure 1). In addition to a complete Java
development environment, PowerJ comes with a set of tools
that differentiates it from other Java IDEs on the market.
These tools are PowerDynamo, a Web site hosting tool that
allows you to drive a Web site from a database; PowerSite, a
Web site management tool; Adaptive Server Anywhere, a
small-footprint relational database; ObjectCycle, a source
code control package; and Enterprise Application Server.
Sybase is also lowering the price of PowerJ, placing it in the
$600–$800 range. Given the tools that come in the package,
that’s not an unreasonable price.

I’ll begin my review by focusing on PowerJ itself. This is
the third version of PowerJ, and it’s had several years to be
polished. The IDE features color-syntax highlighting, back-
ground compilation and drag-and-drop coding. It also pro-
vides a large number of helpful
features including the ability to
remember common settings
(called profiles) so they can be
reused. Figure 2 shows the trans-
action properties. By selecting a
previously stored profile, you can
load all your common JDBC set-
tings. What’s also nice about Pow-
erJ is that the designers have real-
ized that the connections and data
can come from one source at
design time and another at run-
time. For example, when you cre-
ate a component for Enterprise
Application Server (EAS) you’ll
typically use a connection cache
from the server, but when you’re
testing you’ll use a local JDBC
connection. Not only is this provid-
ed for, but PowerJ can even look up the connection caches
inside EAS for you so you don’t have to worry about typing
errors.

Select a component from the palette and drop it on the
screen to place a new instance. Then drag that component
into the code window and the properties window opens,
allowing you to select the method or attribute you wish to
work with. This feature isn’t limited to items on your screen
– you can drag objects from a variety of views onto the code
window. Experienced coders will probably ignore this for the
most part, but it’s good for new developers, or for finding

that odd property or method you just can’t remember.
PowerJ 3.0 also provides the Java version of one of

Sybase’s crown jewels – the DataWindow. Programmers
familiar with PowerBuilder know that this control kept
PowerBuilder in the market and competitive with Visual
Basic even though VB costs thousands less.

It’s hard to describe the DataWindow – and its nonvisu-
al brother, the DataStore – to people who haven’t used it.
That’s because it can be so many different things. It can be
used to create complex reports for display, to create a grid
control, to design the entire input portion of a screen and to
easily build and work with drop-down data. Plus it can
enforce business rules.

The DataWindow also offers an intriguing option for
application partitioning. One of the difficulties in designing
any partitioned application is figuring out how to transfer
data from the screen to the server. Consider an order-entry

screen for some direct marketing
company: the typical user may
create multiple line items for a sin-
gle order, then send them back to
the server to be processed. There
may be rules associated with the
items, such as a discount for pur-
chases exceeding a certain
amount.

The DataWindow provides a
solution for packaging this data by
allowing you to get the state of the
data from the control. This state
can be passed into the server, or
obtained from the server, and syn-
chronized. Additionally, after the
data has been initially obtained
from the server (revising the
order, for example), only the

changes need be sent back. The DataWindow supports
the ability to obtain only the changed rows and return them
to the server.

Another interesting feature of the DataWindow is the
ability to transmit not just the data but the presentation itself
to the client. This allows the server to swap views as needed,
perhaps in response to security requirements.

The DataWindow is also available in an HTML version
that can be used in PowerDynamo. This version converts the
DataWindow within the PowerDynamo environment to a
JSP that allows the same or nearly the same presentation
variety and enforcement as the Java version. And you can

reuse the DataWindow definitions that you create between
PowerBuilder, PowerJ, PowerDynamo and even Sybase’s
Power++, which is a C++ development environment.

Developing a DataWindow definition is easy. PowerJ
includes a DataWindow Builder utility that provides wizards
to walk you through the steps. Developers familiar with
PowerBuilder will realize that the DataWindow Builder is in
reality a featured limited version of PowerBuilder.

I started with the Employee table from the sample data-
base, then selected a free-form presentation style and was
on my way. To make it more useful, I’d edit some of the
fields, turning things like the Department ID into a drop-
down list box. I’d also probably hide the employee ID field
and make it a sequence in the database, turn the sex choice
into radio buttons for male and female, and put min and
max limits on the salary. After that, this definition would be
ready to use. I’d create a screen to use this component, and
a server-side object that would process the input using a
DataStore.

A DataStore is the same as a DataWindow except that it
doesn’t display at runtime. Obviously this is useful in a serv-
er component, but you can have a DataStore on the client
side and then drive multiple views from a single set of data.

PowerJ provides the ability to create what Sybase calls
Visual Classes, which perversely enough are not visual at
runtime. This ability allows you to do visual drag-and-drop
programming on a class that you would normally edit com-
pletely in a code window. Sometimes this is useful, but many
developers will still prefer to work completely in the code
window.

The development environment of PowerJ is also geared
toward team development and deployment of code, not just
coding itself. ObjectCycle is included as a source code con-
trol solution. One advantage of this product is that every
Sybase development tool works with ObjectCycle, and it’s
free. It’s also not a bad control product. If you wish to use
some other tool, such as PVCS, that’s also supported. This in
itself isn’t really novel – JBuilder provides PVCS, for example.
But the deployment options in PowerJ, and in its accompa-
nying tools, are unique. By default there are a number of
options, and you can configure more yourself. These options
include deploying Java code to a Sybase database to run

PRODUCT REVIEW

Sybase PowerJ 3.0
by Sybase

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
Sybase PowerJ 3.0
Sybase, Inc.
6475 Christie Ave.
Emeryville, CA 94608-1050
Phone: 800 8-SYBASE
Fax: 978 369-5071
www.sybase.com
Sybase PowerJ 3.0 is available for $595.

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

by Sean Rhody

Steep learning curve and price notwithstanding,
this is a product to consider

56 JUNE 1999

57JUNE 1999

KL Group

www.klgroup.com/truth

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

58 JUNE 1999

inside the database, to PowerDynamo for use in a Web site,
to an EAS server, to a file system or to a Web site. Because
of the way PowerJ organizes its source code into a hierarchy
of Targets, you can choose to deploy all dependencies auto-
matically as well, making it easy to ensure that the entire dis-
tribution gets where it’s supposed to go.

As stated earlier, PowerJ ships with a wealth of accom-
panying tools. Adaptive Server Anywhere (ASA) is a single-
user version of Sybase’s departmental server. This is no toy
database. Besides supporting two SQL syntaxes, the original
Watcom SQL and Sybase’s Transact SQL, ASA supports data-
base replication and the use of Java. ASA is also extremely
easy to administer, making it an ideal development tool.

PowerDynamo is a Web server that allows you to
dynamically drive the content from your database in a sim-
ple, easy-to-develop fashion. I didn’t dive into PowerDy-
namo deeply, but the demonstration I got from Sybase was
impressive and fast.

PowerSite is a Web site management tool and HTML
authoring program. While not as polished as FrontPage,
PowerSite is more flexible when used in a team environ-
ment. PowerSite’s HTML editor is easy to use, straightfor-
ward and supports all server-side models. Once again
Sybase has loaded this tool with drag-and-drop ability. Pow-
erSite also features its own dialect for creating pages, one
that allows the pages to be translated to ASP, JSP or Power-
Dynamo so they can be deployed in IIS, Netscape or Power-
Dynamo servers. If you’re unsure where you’ll be served up
from, this is a good way to keep your options open, but it’ll
probably be easier to write to the model you’ll be working
with. PowerSite also makes this easy by placing all of the
models on the drag-and-drop palette.

The most impressive add-on to PowerJ is Enterprise
Application Server 3.0 (EAS). Under its old name of Jaguar,
EAS was one of the first offerings in the application server
arena, and offers the broadest support for development,
including COM, CORBA, EJB and Native PowerBuilder. Pow-
erJ comes with a development license – to deploy an appli-
cation you’ll need to purchase additional licenses. EAS was
one of our Editor’s Choice winners this year, based largely on
the solid Java support and the ability to integrate into just
about any distributed coding environment. EAS runs on NT
or Solaris, and will also be available on AIX and HP-UX at a
later date. Unfortunately, the EJB support is only at the 0.4
spec level, but Sybase plans to bring this up to 1.0 compli-
ance in a point release before the end of the year.

I tested PowerJ with EAS and was impressed by the inte-
gration provided. When you design screens you can drag
EAS connections right onto them, and the setup wizards
make it simple to establish the necessary connections. When
you create a component for use within EAS, PowerJ creates
all the necessary methods for you and then provides a fairly
easy way to add attributes and methods. Unfortunately, this
is driven from a menu rather than a toolbar, so there are
annoying extra steps needed to perform this function. You
also have to add all methods this way, or your interface class
will be out of sync with your implementation class. (You can
always edit the interface class directly, so this isn’t a large
problem.)

One of the most valuable integration features of PowerJ
is its multithreaded remote debugging. When debugging a
multithreaded application, you can select the thread you
wish to monitor and then control the state of all the other
threads.

Possibly the most exciting feature, though, is debugging
server code remotely. You can pick a component within EAS
(you must be running the debug version of EAS, which is
provided), set breakpoints and watch points, and wait for it

to be executed. I can’t tell you how valuable this is in getting
server code debugged. And you can do it from anywhere as
long as you can make a TCP/IP connection to the server
machine.

There are some areas for improvement in PowerJ. This
tool was originally aimed at corporate developers, and it
shows that focus. It’s harder to learn than tools like JBuilder.
Part of that is due to the increased functionality it provides,
but also there’s just too much of a learning curve. To really
use the tool you need to learn about targets, projects,
objects, classes and deployments. It’ll take the average devel-
oper longer to come up to speed on PowerJ. In general, I
think it’ll be worth it if you have a need for anything besides
basic development.

Pricing is still somewhat higher than other solutions,
although with the tools included the pricing is more than
reasonable. Sybase has also provided a Java-only learning

edition that’s downloadable from their Web site. It’s not
known whether they will continue this when version 3.0 is
released. Still, with the price now well under $1,000, if you
have any need for more than just a straight Java IDE, this is
definitely a product to consider. And if you have a shop that
needs to leverage previous investments in PowerBuilder
expertise, this is the tool for you.

About the Author
Sean Rhody is the editor-in-chief of Java Developer’s
Journal. He is also a senior consultant with Computer
Sciences Corporation, where he specializes in
application architecture – particularly distributed
systems. He can be reached by e-mail at
sean@sys-con.com.

Figure 1: Pure Java implementation of the Web DataWindow

Figure 2: Transaction properties

sean@sys-con.com

59JUNE 1999

Flashline.com

Flashline.com is offering 30%
off JavaBeans to JDJ readers

who use the coupon code “jdj”

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

Information Architects
Corporation Benefits from

JProbe During Development
of Robust, Scalable Application

by Ethan Henry & Josephine Coombe

egh@klgroup.com jac@klgroup.com

During the development

of Metaphoria DTS,

Information Architects

Corporation uses JProbe

Profiler with JProbe Memory

Debugger from KL Group

to eliminate a memory

leak and dramatically

improve the application’s

performance and scalability

Managing information in the enterprise
environment is no small task. These days
companies are looking to robust and scalable
content-publishing technologies to manage
and distribute information as quickly and
effectively as possible. A number of chal-
lenges have to be overcome first, however.
Data is often scattered across and outside the
enterprise itself – in multiple repositories and
multiple formats. Additionally, companies
today quite simply expect more from their
data: many want information to be cus-
tomized to the user’s requirements and deliv-
ered on a dynamic, as-needed basis.

Developing the Enterprise
Information Portal

Enter Information Architects Corporation,
a worldwide developer of the latest breed of
data management solutions: Enterprise Infor-
mation Portals – online information centers
that feed dynamic, customized data to indi-
vidual users.

Information Architects (IA), headquar-
tered in Charlotte, North Carolina, provides a
full complement of products and services that
answer such next-generation information
requirements. Catering to large enterprises
around the globe, the company offers man-
agement consulting, design, development and
deployment of virtual information portal solu-
tions. Customers benefit from IA’s expertise in
transforming existing information systems
architecture to support a heterogeneous, scal-
able, flexible and ubiquitous Internet/intranet
architecture. To help accomplish this goal, IA
develops Internet software – specifically, mid-
dleware applications.

One of IA’s flagship products is Metaphoria
DTS, a robust and highly scalable Web appli-
cation framework that provides access to
multiple back-end data sources, and presents
the data in a unified, Web-friendly format. This
ability is critical to financial companies, for
example, which have large quantities of data
issuing from diverse sources. Data may origi-
nate from any number of locations – including
external Web sites, databases, FTP files or
local files – and can then be put online.
Metaphoria DTS contains components that
understand these various protocols and can
plug in and immediately use any new proto-
cols that arrive on the enterprise scene with-
out forcing developers to rewrite their exist-

ing applications. Powerful data analysis and
display capabilities make moving and trans-
forming enterprise data fast and seamless.

When sensitive data must be pulled
together, IA’s product is an ideal content-pub-
lishing mechanism, and consequently, often
used for intranets. The new breed of intranet,
the information portal, can deliver all manner
of content to individual members of an orga-
nization. For example, a user could have ready
access to customized personnel information
such as remaining vacation days.

To ensure that applications are robust and
reliable, IA makes memory debugging and per-

formance optimization a standard part of its
software development cycle. IA believes that
every developer on the team should test regu-
larly for memory leaks and performance bot-
tlenecks. Finding these problems early keeps
them from piling up at the end of a project
when time is limited. While developing
Metaphoria DTS, IA used JProbe Profiler and
JProbe Memory Debugger from KL Group.
JProbe helped them clear up memory leaks
quickly and improve performance.

IA’s Metaphoria DTS is delivering signifi-
cant benefits to its customers. Not only is
their data being transformed efficiently and
quickly, companies using Metaphoria DTS are
avoiding the often staggering financial and
morale-related costs associated with major
retraining initiatives. Because data format
conversion is automated by Metaphoria DTS,
employees within IA customer sites can con-
tinue using their traditional methods of man-
aging information. In large enterprise environ-
ments with massive and varied data, as well
as longstanding methods for handling it,

60 JUNE 1999

61JUNE 1999

The Theory Center

Theory Center is offering a 10%
off license on Theory Center’s

JumpStart components for
eBusiness with coupon code

“jdj”/subscriber

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

62 JUNE 1999

Metaphoria DTS delivers the best of both worlds: companies can keep
existing data management processes intact while simultaneously
evolving relatively painlessly to a more up-to-date information man-
agement system.

Java Fulfills Its Potential
Metaphoria DTS was prototyped using Jigsaw (the reference Web

server from the World Wide Web Consortium), and the first shipping
version was built exclusively in Java using servlets. Evan Coyne Mal-
oney, Advance Development Group Leader at IA and a key member of
the Metaphoria DTS development team, assigns much of the credit for
the application’s success to the Java platform itself.

Maloney points out that the platform’s portability allowed them to
write code that could be used with any Web server, allowing them to
avoid building in a custom Web server. The application needed to be
compatible with any given client’s existing server, and with Java this
posed no problem because of the portability provided by the standard
Java Servlet API. Any other language would have limited IA’s target
market for the application significantly, as many companies aren’t
interested in changing their Web server to accommodate other new
services. Because these servlets work with virtually any type of Web
server, it was the ideal choice.

“There are still some people out there who are surprised when I tell
them that we have a site up that’s serving 2 million requests per day,”
Maloney says. “I just let them know that these days Java is, in fact, the
perfect server environment for writing applications.”

The ability of Java to interact with the native platform environment
enhances the features that Metaphoria DTS provides. Although the core
product is written entirely in Java, a DTS add-on component allows the
product to use COM to extract data directly from Windows applica-
tions. This allows DTS to utilize COM interfaces (which don’t change) to
extract data from files rather than requiring DTS to “know” the file for-
mats (which change frequently). Bypassing the file formats allowed IA
to avoid the problem of accommodating changing versions of file types.

JProbe Helps Ensure a Scalable Application
While Java may have been the ideal solution, building and optimiz-

ing the application was still challenging. Scalable performance was a
key goal. The application went through rigorous stress-testing during
the development. Part of this process involved profiling the applica-
tion with KL Group’s JProbe Profiler. IA’s developers knew intuitively
that they had a performance problem, but hadn’t isolated the cause.

IA realized they needed an accurate and highly effective perfor-
mance tool to help assess the problem, but it took some time to iden-
tify the right solution and integrate it into their development. They
tried, but subsequently rejected, another competitive profiler because
of slow performance, says Maloney. IA finally turned to KL Group's
JProbe Profiler, an advanced, highly accurate profiling tool with an
intuitive graphical interface. JProbe Memory Debugger, fully integrated
with JProbe Profiler, gave Maloney and his team the critical data IA
needed on memory allocation.

“Literally within five minutes of running JProbe 2.0 with a develop-
ment version of our product,” Maloney recalls, “we found a problem –
a memory leak.”

JProbe’s runtime Memory Usage Graph identified the problem imme-
diately. “As soon as we looked at that graph, we knew we had a memory
leak; the plateaus were getting higher and higher right in front of our
eyes.” By tracking down the cause of the problem using JProbe Memory
Debugger’s Heap Browser, IA quickly eliminated the offending leak,
which was caused by the program’s holding object references too long.
Specifically, while generating the structure of a Web site, the application
was creating many large objects and stuffing them in a container. But
object references weren’t being released properly – the objects were not
getting garbage collected and the memory footprint kept growing. Soon
the disk started thrashing and performance degraded noticeably.

Using JProbe, they were able to reduce the memory footprint sub-
stantially. The application then ran much faster and was more scalable
– an important factor for a server-based application that needs to ser-
vice millions of requests a day.

For IA, JProbe offered an indisputable return on investment. “Con-
sidering how quickly we found a problem, JProbe was certainly well
worth the purchase price! We only wished we had tried it sooner,” Mal-
oney says. “In fact, we immediately ordered three copies with GSS so
we could implement performance profiling and memory debugging
regularly and on a team-wide basis. More important, JProbe allowed us
to increase the scalability of our application, helping us to achieve one
of our primary goals in developing Metaphoria DTS.”

About the Authors
Ethan Henry is KL Group’s Java Evangelist and can be reached at
egh@klgroup.com.

Josephine Coombe is the head of strategic communications at KL Group. She can
be reached at jac@klgroup.com.

1/8 Ad

63JUNE 1999

Insignia

www.insignia.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

64 JUNE 1999

In the swirl of events around the announcement last
year of the upcoming CORBA 3.0, the attention cen-
tered on the upcoming CORBA Component Model.
While CORBA has existed in some form or another as
an adopted technology of the OMG’s open, neutral,
standards-setting process since October 1991, this
year’s major revision point for the first time will
address a wealth of issues that point at deployment
rather than interface. Let me explain.

A decade ago the Object Management Group start-
ed down the road to infrastructure and end-user standards for interoperabil-
ity in heterogeneous enterprise-wide systems. Ever since, the focus of our
work has been on declaration of interfaces. Interoperability achieved
through declared interfaces, especially through declaration in an interface
definition language (such as OMG IDL), is a powerful concept: it supports
team-oriented software construction (through clearly spelled-out interface
contracts that can be built on many platforms in many languages); it is the
basis for real architectural design of systems; and it is critical for long-term
system maintainability. On the technical side, it also takes away from the pro-
grammer the pain of dealing with interprocess communication and network
communication protocols, allowing programmers to concentrate instead on
system definition (and therefore the “business logic” that needs to be imple-
mented). All from a simple, unassuming IDL.

In 1995 OMG took a huge step forward when we not only fleshed out bet-
ter support for portability, but, more important, defined a basic interoper-
ability protocol, the Generic Inter-ORB Protocol (GIOP), for connecting
CORBA systems (along with the better-known
TCP/IP mapping of GIOP, the Internet Inter-ORB
Protocol, or IIOP). It’s important to note that most
programmers never see GIOP or IIOP; rather,
CORBA implementations layer automatically gen-
erated stubs, skeletons -- in effect, generated pro-
tocols -- over IIOP to ensure end-to-end interoper-
ability between applications relying on CORBA to
perform their interapplication communications.

Since those days the OMG itself has changed
character significantly. Today it comprises 800
member companies, nearly half of them end users
of information technology (like Citigroup, Boeing,
Bellsouth and 3M), or vertical-market independent
software vendors (ISVs) rather than vendors (though big names like
Microsoft, Sun Microsystems, Hewlett-Packard and Fujitsu are longtime mem-
bers). The OMG’s open, neutral, consensus-making process today has under-
way about a hundred standards processes. They range from the traditional
OMG infrastructure definition and maintenance (CORBA itself, the Unified
Modeling Language, services for security and authentication, transactional
integrity, event notification, application internationalization and even print
service management) to vertical-market (in OMG parlance, “domain”) speci-
fications, from manufacturing part definitions and telecommunications net-
work management to life sciences genomic maps and air traffic control sys-
tems.

Obviously, the end-user–oriented specification processes have a more
immediate and obvious impact on the average end user and vertical-market
ISV, who can see more immediately the value of a standardized patient iden-
tification interface that will make a hospital merger work more smoothly.

Nevertheless, the CORBA technology space marches on, and for the first
time addresses what some might consider an implementation technology --
specifically, software deployment in heterogeneous platforms.

In fact, the CORBA 3.0 processes to update CORBA focus on three major
areas:

• For the first time, CORBA specifications now address real-time provision of
service and minimum-footprint (or embedded) implementation. Both areas
are about maintaining interoperability, with some small sacrifice of code
portability, in the exceptional circumstances of embedded, real-time, spe-
cial-purpose processors. In addition, this category of new additions to
CORBA features standardized interfaces for specifying required transport
quality of service as well as the marshaling engine (the “IIOP” engine, in
effect), which allows applications to layer on special-purpose communica-
tions transports such as messaging platforms.

• A large and important part of CORBA 3.0 – and, more important, a group
of interfaces that have already been completed – we term Internet/Java
specifications. These include a standardized firewall specification (for pass-
ing IIOP communications through TCP/IP firewalls in a standard way).
Interestingly, one of these specifications also allows for mapping, in a stan-
dardized way, from Java to IDL (rather than just the more common IDL to
Java). This allows Java programmers to write only Java (and have their IDL
interface definitions automatically generated from their Java code, lever-
aging the closeness of the CORBA IDL and Java object models). To my
mind, the most exciting specifications in this category are the extensions
to the CORBA Core that allow for binary portability of CORBA applications
written in Java (more exactly, compiled for the Java Virtual Machine). Since
the JVM represents a shared executable environment that runs on every
kind of computer, CORBA-based applications can be deployed portably for
the first time in binary form, a major step forward that can’t be accom-
plished in the usual heterogeneous setting.

• As I mentioned above, CORBA 3.0 also addresses deployment of distrib-
uted component software. This includes a large
number of pieces and the ability of application
programmers to (1) pass objects over the network
by value rather than by reference; (2) support mul-
tiple interfaces on a single deployed object; and
(3) integrate scripting languages ranging from Tcl
to REXX to ECMAscript into rapidly deployed com-
binations of CORBA applications and, especially, a
CORBA Component Model that allows declaration,
in an extension of the usual CORBA IDL style, of
the deployment characteristics (such as transac-
tional integrity, secure access and connection
details) of distributed, enterprise-wide clients and
servers.

The greatest impact of these three components will likely be on the serv-
er side. Over the years, a large number of excellent tools have appeared to
simplify the construction of software for the desktop, software for the client.
Application builders typically start from the viewpoint of the design of a data
display or update window and work toward the server with visual compo-
nents that support front-end application duties. In contrast, the wide avail-
ability of deployment technologies such as CORBA Components (as well as
Sun's Enterprise JavaBeans, closely aligned with the CORBA Component
Model Java mapping) will make graphical server software design possible.
Finally, the application service designer and builder -- for both the middle tier
and the back end -- will be able to drag server components from a pallet, con-
nect them graphically, select deployment options such as transactional con-
texts and security domains, and quickly deploy new business logic.

Which is the point, right? And it will come.

About the Author
Dr. Richard Mark Soley, president and technical director of the Object Management
Group, Inc., leads the OMG technology committees. These committees are responsible
for producing standards documents, adopting OMG-standard technology and proposing
new technologies. He is a member of the Editorial Board of Java Developer’s Journal.

What Will Come
Implementation technology–software development in heterogeneous platforms

I M H O

by Richard Soley

“CORBA specifications

now address real-time

provision of service

and minimum footprint

implementation”

65JUNE 1999

InetSoft

InetSoft is offering
FREE “StyleReport”

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

66 JUNE 1999

Mission-critical Web-based applications –
customer self-service, distribution channel
and supply chain management, online trading
and banking – must be deployed on a cluster
of servers in order to provide scalability and
high availability. Scalability means that
servers can be dynamically added or
removed as needed to meet user demand,
and that the overall load of requests is dis-
tributed among the servers so that resources
remain fully utilized. High availability means
that there is no “single point of failure” in
either the system or the application, and that
requests automatically failover from non-
working components to working compo-
nents. Ideally, clustering should be transpar-
ent to applications: externally, the cluster
should present a “single-system image.” In
addition to simplifying the task of application
development, this allows off-the-shelf compo-
nents to be deployed without modification.

The Java Enterprise APIs are rapidly
becoming the primary programming model
for Web-based applications. These APIs pre-
sent two particularly challenging aspects for
a clustering solution. First, they require inte-
gration with front-end Web servers, a fixed
technology that is external to the cluster. Sec-
ond, they require back-end management of
objects, which by their nature have internal
state. In contrast, conventional middleware
such as TP monitors generally support only
stateless RPC-based services. The hard part
about managing state is that excessive com-
munication between servers – to replicate
objects for availability, for example – can
interfere with scalability.

The BEA WebLogic Server provides an
integrated implementation of the Java Enter-
prise APIs. A BEA WebLogic Cluster is a group
of WebLogic servers that coordinate their
actions to provide scalable, highly available
services in a transparent manner. Since the
WebLogic Server is written entirely in Java,
WebLogic clusters are independent from the
underlying hardware and operating system.
Thus a WebLogic cluster can be composed of,
say, uniprocessor Intel machines running
Microsoft NT, large-scale Sun multiprocessors
running Solaris, and IBM AS/400s. In contrast,

platform-specific clustering solutions require
that every node run the same operating sys-
tem. Of course, this allows them to use pro-
prietary hardware, such as shared disks, mul-
titailed disks and high-speed interconnects,
for communication between servers. As an
alternative, WebLogic uses highly optimized
protocols based on new commodity tech-
nologies such as IP multicast.

This JDJ feature article presents an
overview of BEA WebLogic Clusters.

Architecture of a BEA WebLogic
Cluster

Figure 1 shows a high-level view of the
architecture of a WebLogic cluster. BEA
WebLogic Server provides software-based
clustering to ensure scalability and high
availability for Web and Java deployments.
WebLogic clustering uniquely supports

transparent replication, load balancing and
failover for Web page generation (presenta-
tion logic) and Enterprise JavaBeans compo-
nents (business logic).

The Web server front end supports dynam-
ic construction of HTML pages using Java
Servlets, Java HTML and Java Server Pages
(JSP). The application-logic back end hosts
objects and components using Java Remote
Method Invocation (RMI), Enterprise Java-
Beans (EJB) and the Java Naming and Directo-
ry Interface (JNDI). Other back-end Java
Enterprise APIs, such as JDBC and JMS, are
clustered using RMI, EJB and JNDI in much the
same way as applications. The front and back

ends are made up of rather different compo-
nents that are clustered independently.

The Web Server Front End
A WebLogic cluster may be positioned

behind standard Web servers such as
Netscape Enterprise Server or Microsoft
Internet Information Server (IIS). HTTP
requests from Web clients, such as browsers,
may be handled by these Web servers or the
WebLogic front end. Requests for dynamical-
ly generated pages are proxied from the Web
servers to WebLogic Servlet/JHTML/JSP
engines in the front end. This is accom-
plished using Web server proxy plug-ins, e.g.,
defined according to the Netscape API
(NSAPI) or the Microsoft Internet Server API
(ISAPI).

The first line of clustering uses “DNS
Round Robin” between the Web clients and
the Web servers. DNS, the Internet’s Domain
Name Service, resolves a Web site’s name to a
list of IP addresses for the site’s Web servers.
Each time it gets a lookup request, DNS shuf-
fles the list of addresses it returns. A Web
client generally contacts the first server on
the list provided by DNS. After some timeout
period, or if this server fails, the client makes
another DNS request and continues with a
new server. This provides a simple form of
load balancing and failover. It is possible to
install more sophisticated IP-level load bal-
ancing and failover schemes that, for exam-
ple, take into account Web server load,
remove failed servers from the list returned
by DNS and/or ensure that a client session is
always handled by the same Web server
(modulo failures).

The second line of clustering is for
dynamically generated pages and goes
between the Web servers and Servlet/
JHTML/JSP engines in the front end of the
cluster. The Web server proxy plug-ins per-
form load balancing and failover between the
Servlet/JHTML/JSP engines. They use a ses-
sion-level round-robin algorithm that is
weighted by information about server load,
which is piggybacked onto HTTP responses.
If the WebLogic front end is configured to
handle all HTTP requests, so that the stan-
dard Web servers are missing, then the situ-
ation looks even brighter. Since the load bal-
ancing and failover algorithm is part of the
server, it uses information about server load
that is shared across the cluster as a matter
of course. More important, this algorithm

Clustering the BEA
WebLogic Application

FIRST LOOK

by Dean Jacobs

Java and EJB no longer pose limitations

B
EA

 W
eb

Lo
g

ic
 F

o
cu

s

67JUNE 1999

interland

www.interland.net

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

68 JUNE 1999

prefers the local Servlet/JHTML/JSP engine,
unless the load is very unevenly distributed,
so the request never has to leave the address
space of the JVM.

When a Web client first contacts a cluster
of Web servers, a session is created that lasts
until some idle timeout expires. The Java
standards include the notion of Servlet Ses-
sion State, which is automatically retained on
the servers during the session. As an exam-
ple, Servlet Session State might be used to
retain the contents of a shopping cart in a
retail application. WebLogic clusters provide
for highly available Servlet Session State
using disk-based or in-memory replication
(as described in more detail later).

The Application-Logic Back End
In the back end, a user- or system-level

service is clustered by making an instance of
an object (RMI) or component (EJB) that
provides the service available on several dif-
ferent servers. An unclustered service is
invoked by calling methods of a stub, which
marshals the arguments and passes them to
a particular remote object. A clustered ser-
vice is invoked by calling methods of a
smart stub, which can find the possible
instances of the service and switch between
them as needed for load balancing and
failover. A variety of load balancing and
failover algorithms are provided. It is possi-
ble to specify the particular algorithm to use
with a given service at the time that service
is deployed.

The default is a transaction-level round-
robin algorithm that attempts to colocate all
services invoked within the same transac-
tion. This algorithm takes server load into
account only if the stub appears on a server,
since load information is expensive to obtain
on a client. When the Servlet/JHTML/JSP
engine invokes a clustered back-end service,
server-side load balancing occurs. A pro-
grammed client may invoke a clustered ser-
vice directly, resulting in client-side load bal-
ancing, or it may have the service invoked on
its behalf within the cluster.

There are two forms of clustered back-end
services: stateless, which are instance-neu-
tral; and stateful, which are instance-specific.
These forms are treated quite differently
within the cluster.

Stateless Services
A stateless service may not maintain state

on behalf of an application, rather like a con-
ventional RPC. It may of course access appli-
cation state, but only by loading it temporar-
ily into memory from a database, file system
or other external medium. The EJB compo-
nent model provides a natural way of imple-
menting stateless services, namely, stateless
session beans. Stateless services can also be
implemented as RMI objects, but then it is up
to the programmer to abide by this restric-
tion.

The stateless service model has been

widely advocated because it promotes
scalability. There are two reasons for this.
First, it obviates the need to back up state
in the interests of availability, e.g., by repli-
cating it within the cluster. Second, it
allows load balancing to occur on every
invocation of the service. This is because
the service is “instance-neutral,” that is, it
doesn’t matter which instance of the ser-
vice is invoked.

When a stateless service is deployed in a
WebLogic cluster, an instance of the service
is created on each server that hosts it. A
smart stub obtains references to these
instances from the clusterwide naming ser-
vice and switches between them as needed
for load balancing and failover. Retries occur
only if it can be guaranteed that a failed oper-
ation did not have side effects, e.g., because
it never got started, it was transactional and
an abort clearly occurred, or it was declared
to be idempotent. If such cases do not apply,
application code may contain explicit retries,
perhaps after undoing side effects. Other
than this, clustering is completely transpar-
ent to the application.

WebLogic clusters support an important
special case of stateless services: service fac-
tories that create unclustered stateful service
objects. The factory itself is stateless, so its
stub can do load balancing and failover in the
usual way. The service objects created by the
factory are not clustered, however, and may
therefore maintain state on behalf of an appli-
cation. Since this state is not backed up, it
will be lost if the object fails. Application
code must therefore contain an explicit retry
loop that creates a new instance of the
object. EJB stateful session beans fit natural-
ly into this model, since they are not persis-
tent. This model may also be used with RMI
objects.

Stateful Services
A stateful service may maintain state on

behalf of an application. Such a service is
“instance-specific” in the sense that each
request is intended for a particular instance
of the service. In a cluster, the state must be
backed up in the interests of availability and
can migrate in the interests of load balanc-
ing or availability. The cluster must there-
fore provide some kind of internal activation
service that finds or creates service
instances. If an instance can be concurrently
used by several clients, as is the case for
persistent components such as EJB entity
beans that are accessed by a global key, then
this service must ensure that conflicts do
not arise.

One approach to state maintenance is to
keep the state in a database or other persis-
tent store. This is particularly suitable for
persistent components, but may also be
applied to transient objects. This approach
scales like stateless services, and in fact dif-
fers only in that the latter requires explicit
disk reads/writes. The activation service can
avoid concurrency conflicts here simply by
relying on underlying database locking. In a
WebLogic cluster, EJB entity beans always
use this approach (see Figure 2).

A related approach is to maintain a write-
through cache, which keeps a current copy of
the state in memory to avoid subsequent
reads. This makes it considerably harder to
avoid concurrency conflicts, and doing so
can interfere with scalability. Databases are
very good at caching objects in memory and
doing the minimal disk I/O necessary to pro-
vide transactional protection. Application
servers may not do much better for persis-
tent components, and so such caching may
be best applied to transient objects that are
used by a single client.

Figure 1: BEA WebLogic cluster architecture

B
EA

 W
eb

Lo
g

ic
 F

o
cu

s

69JUNE 1999

Force 5

Force 5 is offering a FREE
30-day evaluation of “JCloak”

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

A third approach is to keep a secondary
copy in memory on another machine. This is
of course more susceptible to failures and
isn’t suitable for persistent components. The
hard part here is determining when and how
the state of an object has changed. (Persis-
tent components are generally just written
out on transaction boundaries.) If the appli-
cation programmer is made responsible, pre-
sumably through some proprietary API, then
the feature becomes harder to use. If the sys-
tem is made responsible, then the feature
may be less efficient since unnecessarily
large updates may be performed more often
than necessary.

In a WebLogic cluster, stateful session
beans and RMI objects can be configured to
use in-memory replication. The replication
system relies on the programmer to deter-
mine when and how the state of an object has
changed. It then takes care of transporting an
update delta from the primary copy to the
secondary copy. Scalability comes from dis-
tributing the primaries and secondaries
across the cluster. This is in contrast to repli-
cation systems that keep all of the objects on
(1) a fixed-size subset of the servers or (2) all
of the servers.

The Naming Service
Access to clustered services is obtained

through a JNDI-compliant naming service,
which is itself replicated across the cluster so
there is no single point of failure. To offer an
instance of a clustered service, a server
advertises a provider at a particular node in
the replicated naming tree. Each server in the
cluster adds a stub for this provider to a ser-
vice pool stored at the node in its copy of the
tree. When a client looks up the service, it
obtains a smart stub that knows about the
pool at this node. When the stub needs to

find a provider for load balancing or failover,
it chooses from a list obtained from this pool.

Conclusion
The BEA WebLogic Server had evolved to

meet the demands for scalability and high
availability for mission-critical Web-based
applications. BEA WebLogic Clusters provide
scalable, highly available services in a trans-
parent manner. The challenges of software-
only clustering have been met by a combina-
tion of careful state management and highly
optimized protocols based on new commodi-
ty technologies such as IP multicast. Initial
measurements show that WebLogic clusters
are both high performance and highly scal-
able. As an example, RMI benchmarks have
shown that the throughput of a WebLogic
cluster servicing 10,000 active clients scales
linearly up to 10 servers, providing a maxi-
mum of 7,942 round-trip method invocations
per second. In this benchmark, each server
was on single-processor running Microsoft
NT 4.0 with the JavaSoft JVM and the Syman-
tec JIT. Similarly, tests at IBM have shown lin-
ear scaling up to 12 AS/400 processors. In
general, experience with the BEA WebLogic
Server has shown that Java and EJB do not
pose limitations on performance as previous-
ly believed, and in fact can deliver the levels
of performance, scalability and high availabil-
ity required for mission-critical Web-based
applications.

About the Author
Dean Jacobs is an architect at WebXpress, a BEA
company, where he is responsible for the WebLogic
Server core and WebLogic clusters. He received his
Ph.D. in computer science from Cornell University in
1985. He can be reached at dean@weblogic.com.

Figure 2: BEA WebLogic Server management console
displaying information about a deployed entity bean

GET
YOUR
OWN!

GET
YOUR
OWN!

GET
YOUR
OWN!

$3999one
year

two
years

$6999

1800-513-7111
$69 one year Canada/Mexico

$99 one year all other countries

12 issues

24 issues

or subscribe online for faster service
subscribe@sys-con.com

Subscribe today and receive
“JDJ Digital Edition” FREE!

save
$30!
save
$10!

dean@weblogic.com

71JUNE 1999

Sales Vision

www.salesvision.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

TRIP.com’s Online Travel Solution

by Scott Davison

scott@sys-con.com

Demanding business

travelers with tight

budgets and time

constraints save all

around with

WebLogic-based

online travel

tool, intelliTRIP

JUNE 199972

There are nearly 6 million business travelers
using the Internet, responsible for more than $30
billion in travel expenses each year. For the Inter-
net-based travel services industry, this is a
tremendous revenue opportunity and the compe-
tition for this market is very intense.

At the same time, business travelers are per-
haps the most demanding of travelers. Often,
many of their trips are scheduled at the last
moment, and under budget constraints. Addi-
tionally, these travelers may be booking frequent
or regular trips, and don’t want to spend more
time than necessary searching for lowest fares or
convenient flight times.

TRIP.com’s intelliTRIP is an online search tool
for travel reservations along with a host of addi-
tional information services, all accessible
through any standard Web browser.

Saving time for the traveler is a major benefit
of intelliTRIP; it allows the user to use a single
request to access information from several differ-
ent sources in just 90 seconds, rather than search-
ing one by one through multiple airlines to gather
flight information. IntelliTRIP relies on the BEA
WebLogic Server and its Enterprise JavaBeans
(EJB) technology as the foundation of its compo-
nent-based architecture to deliver this fast and
easy-to-use service.

One-stop Shopping at
www.intelliTRIP.com

Users access their account via www.intel-
liTRIP.com, and specify their desired itinerary.
intelliTRIP immediately searches the entire airline
inventory and provides the user with a list of as
many as 25 flight options. This list will also include
Internet-based specials that are not currently
available outside the individual Web sites.

IntelliTRIP is a tool that searches multiple
travel and airline Web sites, enabling users to
compare fares, trip routes and airlines to find the
most desirable flight plan. The BEA WebLogic
Server manages each transaction. The direct air-
line connection is an advantage of intelliTRIP,
ensuring that users get the lowest possible fares
guaranteed by the airline.

Making the BEA WebLogic
Connection

“Helping business travelers find the quickest,
easiest way to comparison shop airline fares has
always been our objective,” says Steve Graese,
software development manager at TRIP.com. “So
we are always looking for ways not only to stay
ahead of our competition, but also to make sure
we are continually using the latest technologies
to bring the most useful information to our users
and bring it to them faster.”

TRIP.com currently handles hundreds of
simultaneous users, and estimates usage rates as
high as 14 million hits per month, with market
growth as high as 50% annually. With these high
usage numbers, scalability of the underlying sys-
tem was a prime requirement for TRIP.com when
selecting a Web application server. BEA WebLog-
ic was selected as a crucial part of the intelliTRIP

service since it met the requirements of scalabil-
ity, reliability and security. In addition, BEA
WebLogic’s comprehensive implementation of
EJB technology and support of Java and other
industry standards provide a foundation for
growth as the Internet-based business market
continues to expand.

Before the implementation of BEA WebLogic,
Web interfaces were a Netscape plug-in that
could not support many of the browsers used by
travelers. This limited the ability for intelliTRIP to
reach a large portion of its intended audience,
and made it difficult for users to take advantage
of its search capabilities.

Another concern of TRIP.com was to ensure
that the intelliTRIP infrastructure would be able
to support the expected growth of its market.
“We’re looking at growth rates as high as 50% a
year,” Graese estimates. “So we know we’re going
to be adding servers to handle that kind of vol-
ume. We don’t want intelliTRIP users to quickly
lose patience if there are any delays in providing
the information they need. BEA WebLogic is
meeting today’s demands and it’s what we’ll be
relying on as we grow.”

That’s why TRIP.com selected the BEA
WebLogic Server for intelliTRIP. Based on Java
standards, BEA WebLogic is browser-indepen-
dent and provides additional features that are
compliant with any Web browser. “Our decision
to go with BEA WebLogic was driven by a need to
support all of intelliTRIP’s users,” says Graese.
“We were happy to see just how much BEA
WebLogic added to our capabilities. [It] had so
many features built in Enterprise JavaBeans,
servlets and security that we could concentrate
our efforts on the intelliTRIP application itself,
and not worry so much about building the infra-
structure. BEA WebLogic is serving a critical
function for us and for the intelliTRIP user.”

TRIP.com began developing the BEA WebLog-
ic-based solution in December 1998, and
launched in April 1999. Graese adds, “WebLogic
saved us countless development dollars and
labor hours, allowing us to provide the best pos-
sible product to our users in the shortest possi-
ble amount of time.” IntelliTRIP utilizes the fol-
lowing BEA WebLogic features:
• Enterprise Java Beans EJBs for the secure

sharing of transactional business components
• Servlets for supporting non-Java clients in

using Web browsers
• Connection pooling for databases and query

caching
• Authorization control lists for reliable security

of access and transactions
• Built-in secure sockets layer for transaction

security over public networks

Technical Specifications
• Three-tier, 100% Java-based architecture
• Sun Solaris 450 Enterprise Server
• Sun Java Virtual Machines 1.1.7.05
• Netscape Enterprise Server
• BEA WebLogic Server

About the Author
Scott Davison is one of the founding editors of
SYS-CON Publications, Inc., the publisher of Java
Developer’s Journal. Scott can be reached at
scott@sys-con.com.

B
EA

 W
eb

Lo
g

ic
 F

o
cu

s

73JUNE 1999

Compuware

NuMega is offering chance
to win a FREE copy of

“NuMega DevPartner 1.22
for Java!” a $689 value.

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

74 JUNE 1999

Mountaineering in the Office?
Developers and managers often think of

enterprise applications as insurmountable
mountain peaks that only experts can climb.
Much like mountain climbing, building a
large-scale, enterprise-wide system is a
daunting task, not for the faint of heart!

As a consultant, I have spent much time
as an application architect, leading clients to
the summit of an enterprise-wide system. In
my experience, guiding an unskilled climbing
party is dangerous. Similarly, building an
enterprise-wide application without first
educating your developers in distributed
component technologies is a perilous under-
taking.

JavaSoft has presented us with APIs such
as the Java Naming and Directory Interface
(JNDI) API, Java Servlet API and Java Mes-
sage Service (JMS) API to help in our efforts.
However, their new specification, Enterprise
JavaBeans (EJB), holds the most promise to
ease development of enterprise applications.

EJB’s component-based development
approach provides an exciting step toward
enabling the average developer to make signif-
icant impacts for their organization quickly.
EJB “empowers” the developer by hiding
many of the complexities relating to persis-
tence, transaction management, security,
resource pooling, distributed object location,
the integration of disparate technologies, and
more. However, while any technology may
tout its ease of use, it usually takes time to
understand exactly how to best apply the
technology to solve business problems.

The first issue on everyone’s agenda is:
“Where does this new technology fit into our
existing architecture?” or even “Where does
this new technology fit into an enterprise
Java architecture?” While choosing a route in
climbing isn’t easy, neither is finding your
way through the numerous APIs of the Java
platform for the Enterprise.

This article seeks to educate you on EJB’s
role in the Java platform for the Enterprise.
Since describing EJB’s ability to integrate
with disparate technologies would consti-
tute a lengthy article by itself, I’ll focus on
explaining the role of EJBs in a purely Java-
based application solution today. Figure 1

puts the Java Enterprise APIs into perspec-
tive. Welcome to the Westra Party. Let’s
begin our trek!

Trailhead: Enterprise JavaBeans
When guiding an inexperienced party, a

mountain guide generally will take the path of
least resistance to the top. Enterprise Java-
Beans represents the path of least resistance
to the corporate developer who wishes to
build scalable, portable, enterprise applica-
tions quickly. As JavaBeans has led the com-
ponent revolution for portable, client-side
development, EJB looks to do the same for
portable server-side component develop-
ment. As stated before, EJB eases develop-
ment for corporate developers by hiding the
complexities of building applications with
distributed architectures. Let’s review some
key concepts in the EJB specification that
make it easy to use, then dig into EJB’s role
within the Java Enterprise APIs.

The Enterprise JavaBeans specification,
supported by industry leaders such as IBM,
AOL/Netscape, BEA Systems and Oracle,
defines a component model for building n-
tiered Java applications in a distributed
architecture. The specification defines two
types of components or EnterpriseBeans:
• SessionBeans: Components that contain

business logic and maintain session with a
particular client

• EntityBeans: Components that represent
business entities and are inherently per-
sistent

Thus a ShoppingCartBean that holds
products a user wishes to purchase from a
Web site would be a prime candidate for a
SessionBean. Likewise, the OrderBean in this
Web application would be an example of an
EntityBean that may contain price informa-
tion, order date and a shipping address while
stored in the seller’s database.

Apart from defining EnterpriseBeans, the
central ingredient of the EJB specification’s
component model with respect to simplify-
ing distributed systems development is the
concept of a component execution environ-
ment. Such an environment typically con-
sists of an EJB Server and EJB containers.

JavaBean client components typically run
within a visual container. Similarly, EJB con-
tainers allocate a process within their EJB
Server for your server-side components (i.e.,
SessionBeans and EntityBeans) to execute.
The container shelters your component from
its runtime platform by managing all interac-
tions with the operating system for the com-
ponent. Thus, together, an EJB Server and its
containers provide your components with
access to runtime services such as persis-
tence, distributed transaction management,
threading and resource pooling .

Any vendor following the Enterprise Java-
Beans specification can build EJB Server
functionality into their products. For
instance, database management systems,
application servers, component transaction
servers, transaction processing monitors
and object transaction managers are all
products that could include EJB Server func-
tionality. Oracle’s RDBMS, Novera JBusiness
Application Server from Novera Software,
Sybase’s Jaguar Component Transaction
Server and BEA System’s M3 Object Trans-
action Manager, respectively, are products
to watch now and in the future for EJB com-
pliance.

The exciting thing about the EJB specifi-
cation is that it sets a standard for server-
side components to obtain distributed run-
time services, much like the JavaBeans spec-
ification does for client-side beans. Also,
application components that utilize their
container only for services are guaranteed
interoperability when migrated to other EJB
Servers provided by third-party vendors. As
we’ll see, EJB Server functionality relies
heavily on the Java Enterprise APIs. With
that quick overview, we’ve reached our first
stop, Base Camp.

Base Camp: Java Enterprise
Persistence APIs

At Base Camp we discover how database
interface standards integrate with Enterprise
JavaBeans. The three leading Java DB stan-
dards – the JDBC 2.0, SQLJ and ODMG 2.0
Binding APIs – cover three related types of
persistence models. The JDBC 2.0 API pro-
vides an object interface to SQL database
calls. The SQLJ specification defines the use
of embedded SQL running on the JDBC API to
provide portable stored procedures and data
types. Last, the ODMG 2.0 Binding API pro-
vides for the transparent storage of Java

EJB HOME

Enterprise JavaBeans
Where does EJB fit into the Java

platform for the Enterprise?
by Jason Westra

75JUNE 1999

IMI Systems

www.imisys.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

76 JUNE 1999

objects to an object database. While the EJB
specification doesn’t require an EJB Server
to implement a specific storage API, most
EJB vendors to date have provided support
for JDBC. They’ll likely add support for the
remaining two enterprise persistence APIs as
demand increases.

The EJB specification provides two
mechanisms for storing EntityBeans: bean-
managed persistence and container-man-
aged persistence. Bean-managed persis-
tence requires you to perform your own
database connections. You must also under-
stand at least one of the three complex stor-
age APIs discussed above or object serial-
ization. This approach offers you flexibility,
but neither utilizes an EJB Server’s power
nor provides truly portable business compo-
nents. For instance, what if your bean-man-
aged EntityBean, originally built to access an
RDBMS, now needs to be reused in an appli-
cation that stores the component in a serial-
ized format?

To solve this problem and more, EJB pro-
vides container-managed persistence. Con-
tainer-managed persistence relies on the EJB
server to generate the appropriate code to
store the EntityBean. This component-based
approach reduces development time by
shielding you from writing complex storage
code. It also promotes bean portability by
not locking your EntityBeans into a particu-
lar storage scheme. The Java Enterprise Per-
sistence APIs offer powerful options in data
storage, while EJB’s container-managed per-
sistence simplifies development of database
applications. What else does EJB offer to
ease our trek?

Rest Stop: Java Transaction
Service API

At this rest stop we’ll review the Java
Transaction Service to understand its rela-
tionship with Enterprise JavaBeans. The JTS
is based on CORBA’s OTS and provides an
interface to manage distributed transactions
to multiple resources with a two-phase com-
mit protocol. Thus JTS provides EJB applica-
tions with the ability to perform distributed
transactions across multiple databases and
even promises to allow transactions span-
ning different EJB Servers! JTS provides
important functionality, but EJB adds critical
packaging or encapsulation that conceals the
complexities of transaction management
from application developers through con-
tainer-managed transactions. With the latter,
all transaction boundaries are formed implic-
itly by the container and the EJB Server. You
can wire numerous EJBeans together to cre-
ate complex business logic without having to
code a single explicit transaction demarca-
tion.

Component-based development tech-
niques allow transaction rules to be declared
at EJBean deployment without code modifica-
tion. Transaction attributes can be declared
at the bean level or they can be very granular,

declared on a per-method basis. For example,
an EJBean deployed with TX_SUPPORTS in
your initial application may be redeployed
using TX_REQUIRED by utilizing your EJB
Server’s deployment wizards to modify the
component’s properties! While EJB also offers
bean-managed transactions, only the most
experienced developers should attempt to
use this capability. Custom bean-managed
transactions carry serious liabilities such as
limited portability and reusability, and com-
plexity of development. Figure 2 lists valid
transaction attributes.

Java Naming and Directory
Interface API

“This mountain is enormous. Where
are we anyway?”

Mountaineers often use a receiver device
to calculate their locations automatically
from the global positioning system (GPS).
Just as a satellite can transparently locate
your position for you, EJB Servers use the
JNDI to easily locate distributed Enterprise
JavaBeans. JNDI presents a single interface
to multiple naming and directory services in
your enterprise. With it you can connect to
heterogeneous services such as LDAP, NIS
and CORBA (COS) Naming, and to an RMI
Registry.

Because the EJB specification requires
the use of JNDI, you don’t need to know, for
instance, what naming service to use or that
your ShoppingCartBean is running on your
NT server while your OrderBean is running
on your UNIX box. You simply code to a sin-
gle interface and access all distributed com-
ponents transparently. Also, redeploying
your components to another location has no

effect on your lookup code. However, keep in
mind that redeploying them to another ven-
dor’s EJB Server may require lookup code
changes if you haven’t insulated your calls
with sound, object-oriented techniques.

Java Remote Method Invocation
“Base Camp to Westra Party….Do

you copy?”
Distributed communications is essential

in mountaineering. At Base Camp we left
behind a two-way radio and Hank, the radio
operator, to inform us on important matters
like dangerous weather conditions. Likewise,
the ability to communicate with distributed
objects is essential to scalable enterprise
applications.

JavaSoft developed RMI to allow distrib-
uted communications between Java Virtual
Machines in an object-oriented fashion.
Objects implementing the java.io.Serializable
interface can be transported via RMI without
manual byte streams management, which is a
leap beyond socket communications!

However, taking advantage of RMI can be
tedious work. It begins with defining your
remote implementation class. With RMI, a
distributed object doesn’t move and all
access is through a remote interface that you
must define as well. This contains a subset of
its distributed object’s methods, presenting
only methods you want to call remotely on
your distributed object. Next, a tool is used
to generate skeletons and stubs from your
remote implementation class. These classes
utilize a marshaling scheme to inflate and
deflate objects passed to and from your
remote object. Now that your RMI classes
(remote implementation class, remote inter-

JMS-
Message
Queue

JMS-
Naming
Service

JMS-
Transaction

Service

Java Client Browser Client
(HTML only)

HTTP

ServletServletJava Client

RMI

Entity
Bean

Entity
Bean

Entity
Bean

Session
Bean

Java Enterprise Persistence APIs (JDBC, ODMG Binding, SQLJ)

Session
Bean

Database
Server(s)

Figure 1: Standard Java Enterprise architecture

77JUNE 1999

ZTI

www.zti.ca

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

78 JUNE 1999

face, client stub and remote skeleton) are
ready for deployment, you must perform rou-
tine chores, such as starting a bootstrap reg-
istry service and binding your distributed
references with a unique name to the reg-
istry. To access your distributed objects you
must code lookup calls to the java.rmi.Nam-
ing class, passing URLs as keys. To totally
confuse the situation, you now wonder
which lookup service to really use, the JNDI
API or the java.rmi.Naming class!

EJB takes much of the tedium and confu-
sion out of developing distributed objects.
Your EJB objects must adhere to Java RMI
rules, such as arguments and return values
must be legal types, and you must define a
remote interface for each SessionBean or
EntityBean. However, EJB does conceal the
need to perform bootstrap registry services,
register your EJBeans and access numerous
naming services to get a distributed refer-
ence. EJB Servers provide skeleton and stub
generation for your EJBeans, as well as life-
cycle management (activation and deactiva-
tion) of your components. Some products
may even offer automatic generation of
remote interfaces for your EJBeans. Finally,
as stated earlier, the EJB specification pre-
vents confusion over multiple naming ser-
vices by requiring the use of JNDI to look up
all components. The RMI Registry can be
accessed via JNDI’s API.

Why would you use regular RMI, if EJB
hides much of RMI’s complexities? The most
compelling reason is that the current specifi-
cation for EJB doesn’t support shared, state-
ful services. The closest EJB has is a stateful
SessionBean, but that exists only on a per-
client basis. It can’t be shared between mul-
tiple users. This is an area where coding an
RMI server would be a suitable solution. For
instance, you might use an RMI server as a
shared service to load reference table data
into memory only once.

From this example we can see that EJB is
not a “be-all, end-all” solution to our needs.
Other Java Enterprise APIs will directly
impact our distributed architecture as well.
In any event, the ability to communicate
remotely is a necessity in our enterprise-
wide solution, and working with EJB makes
life even easier.

Java Message Service API
“Westra Party to Base Camp.…I just

received your message. Sorry, my com-
link was turned off.”

When a message is important, it must
have guaranteed delivery, especially when
climbers’ lives are at stake. The need for
guaranteed message delivery is common in
distributed enterprise applications as well. In
the Java platform for the Enterprise, the JMS
guarantees message delivery through asyn-
chronous communications based on messag-
ing queuing, and publish and subscribe
mechanisms. The JTS provides a degree of
message guarantee in that it raises an excep-

tion if not all components in a transaction are
accessed successfully. However, the current
specification for Enterprise JavaBeans does-
n’t support asynchronous messaging. So if
your enterprise-wide solution needs guaran-
teed messaging, choose an application server
that supports not only EJB, but provides JMS
support as well.

Java Servlet API
“Look what I found, an old ice ax!”
Climbing equipment is outdated every

year; technically advanced products make
old gear obsolete. The relation of Java
servlets to Enterprise JavaBeans is similar. In
mid-1997, JavaSoft released the Java Servlet
API to define how Java servlets and Web
servers communicate with one another and
provide the first real use of server-side Java.
To utilize servlets, your Web server must be
Java-enabled and support the Java Servlet
API. Most n-tiered Java applications current-
ly in production have been built around
servlet functionality. For these applications,
customized servlets provided load balanc-
ing, fail-over, session management, database
access, servlet-oriented security and busi-
ness rules processing on a middle tier.

Much of the functionality just described has
been replaced by EJB with the help of applica-
tion servers. Application servers supporting
the EJB specification allow you to define and
execute business logic, session management
and database access logic from within your Ses-
sionBeans and EntityBeans instead.

Is there a need to use servlets in an EJB
implementation? Aren’t they in opposition to
each other? Yes…and Maybe. Just as a thrifty
climber makes use of old equipment when he
finds it, servlets remain an integral part of a
distributed enterprise Java solution. Servlets
are great for accessing EJBeans when a limi-
tation prevents the remote invocation of the
EnterpriseBean from a client. For instance, if
you build an Internet application that is pure
HTML, you’ll have a problem calling your
EJBeans from your browser.

Likewise, if corporate policy prevents
using IIOP to cross its firewalls, servlets are a
perfect choice to communicate directly with
your EJBeans once the firewall is breached
with an HTTP request. In your Java enterprise
solution, servlets will move to more of a
router and HTML builder/parser role, routing
requests to the appropriate EJBean as well as
dynamically building/parsing HTML pages
from EJBean data. Move your database access
and business rule processing into EJBeans,
relieving servlets of these responsibilities.

Summary/Conclusion
On our journey up the mountain of dis-

tributed systems development, we looked at
Enterprise JavaBeans’ role in the Java plat-
form for the Enterprise. With EJB, JavaSoft
has provided the final piece of gear you need
to build scalable, enterprise-wide systems!
Previously released APIs of the Java platform
for the Enterprise either supplement EJB’s
weaknesses or lay the foundation for EJB’s
strengths. EJB is the glue that provides a uni-
form bundling of the Java Enterprise APIs,
increasing application reliability and scala-
bility as well as guaranteeing portability,
ease of use and interoperability across EJB
Servers. The Java Enterprise APIs are a pow-
erful set of interfaces, and with the help of
tools from vendors such as Novera Software,
BEA and IBM you’ll be well equipped to build
your enterprise-wide system quickly.

We came far this month, but we haven’t
reached the summit yet, nor have we covered this
topic in detail. Look to www.javasoft.com/prod-
ucts/OV_enterpriseProduct.html for more infor-
mation about the Java Enterprise APIs. Happy
trekking!

About the Author:
Jason Westra resides in Boulder, Colorado, where
he is a senior consultant with the component-based
development practice of CSC Consulting. He can
be reached at jwestra@uswestmail.net.

jwestra@uswestmail.net

Figure 2: Transaction attributes

TX_NOT_SUPPORTED The container will always invoke the method without a transaction
context, suspending a transaction if currently within a transaction
scope.

TX_BEAN_MANAGED The enterprise bean can use the java.jts.Usertransaction interface to
explicitly create transaction boundaries.

TX_REQUIRED The enterprise bean must be within the transaction scope. If the client
invokes it within an existing transaction, its transaction context is
used. If a client invokes the bean with no transaction, a new transac-
tion is automatically created by the container.

TX_SUPPORTS The enterprise bean is invoked within a transaction if one currently
exists. If none exist, the bean is invoked without a transaction.

TX_REQUIRES_NEW The container starts a new transaction on each call to the enterprise
bean.

79JUNE 1999

Slangsoft

www.slangsoft.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

80 JUNE 1999

eBusiness Journal

Introducing eBusiness Journal

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

81JUNE 1999

NSICOM

www.nsicom.com
See JDJ Special Offer at:

http://www.sys-con.com/java/specialsoftheweek.html

JDJ Advertising

www.sys-
con.com/java/adnews.htm

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

82 JUNE 1999

How do I disable a Frame’s Minimize and
Maximize buttons? How do I obtain the
amount of a drive’s free disk space? How do
I retrieve the window handle of a Java
Frame? How can I read the label of a disk
drive? These and other similar questions
are quite prevalent on the Java Usenet
newsgroups. The answer to these questions
is always the same: you need to use the
Java Native Interface (JNI). These types of
questions are so commonplace (not only in
the newsgroups) that I decided to provide
the answers in the form of a Windows-spe-
cific Java utility class written with the help
of the JNI.

Background
One of Java’s many strengths is its

platform-independent nature. This fea-
ture allows a pure Java program writ-
ten under a Win32 operating system
(i.e., Win95/98/NT) to be easily ported
to a UNIX operating system without
any change to the program’s compiled
bytecode. However, there are times
when a call to an operating system
function from within a Java program is
necessary and desirable. The JNI is the
mechanism by which a Java program
can call an OS specific function. The
JNI comes complete with its own set of
data types and native methods that can
create Java objects (arrays, Strings,
etc.), call Java methods, and catch and
throw exceptions. A detailed explana-
tion of the JNI is beyond the scope of
this article. For more information look at the
JNI section of Sun’s Java Tutorial located at
www.javasoft.com/docs/books/tutorial/nativ
e1.1/index.html. Alternatively, read Sun’s JNI
Specification at http://java.sun.com/prod-
ucts/jdk/1.1/docs/guide/jni/spec/jniTOC.
doc.html.

Implementation
The Java utility class, JUtil, contains 21

static (class) methods: three pure Java

methods whose implementations reside in
a Java source file (see Listing 1) and 18
native methods whose implementations
reside in a C source file (see Listing 2).
Table 1 lists the method names, where the
methods are implemented, and a brief
method description.

The implementations for the 18 native
JUtil methods make use of native JNI meth-
ods and Win32 API functions to accomplish
their tasks. The C function prototypes are
generated from the Java class file using the
JDK javah utility that creates a C header file
(see Listing 3). This C header file must be

included in the C source file, which is com-
piled into a Dynamic Link Library (DLL) file.

Since all the methods are static, there’s
no need to instantiate an object of the JUtil
class to use them. Naturally, you’ll have to
qualify the method names with the class
name when invoking the methods. I call the
System class’s loadLibrary() method inside
a static block of the Java source file (see
Listing 1). This method loads the DLL file at
class load time, which occurs the first time

a JUtil method is called from within your
Java program. The JUtil class is made final,
so it can’t be subclassed (as it’s strictly a
utility class), and the constructor is made
private so the class can’t be instantiated.

I’m not going to detail the use of all the
JUtil methods as I’ve provided an HTML
help file generated from the Java source
file’s javadoc comments. Nevertheless, I
will cover the most utilized methods.

Quite a few of the JUtil native methods
deal with manipulating a Java window.
These methods require a Win32 window
handle to perform their native operation.
You retrieve a Java window’s Win32 window
handle by using the JUtil class’s getHwnd()
method and passing it the title of the win-
dow. Although it’s not an ideal solution, as
you can have multiple windows with the
same name, it’s the only viable way of
retrieving the required information. This
method allows you to retrieve the Win32
handle of any application window currently

running on the system. You must
take care to specify the exact win-
dow title, including case and punctu-
ation.

When a Java Frame is set unresiz-
able, via the Frame class’s setResiz-
able() method, the user is prevented
from resizing the Frame with the
mouse. Unfortunately, this method
doesn’t disable the Frame’s Minimize
and Maximize buttons or its equiva-
lent system menu items. Using the
JUtil class’s setMinimizeEnabled()
and setMaximizeEnabled() methods
you can disable those buttons and
menu items for the specified window.
Except for the Close menu item,
there is a JUtil native method to
manipulate all of a window’s system
menu items (i.e., Restore, Move, Size,
Minimize and Maximize). (Note: Start-
ing with JDK 1.1.7B and Java 2 [for-

merly JDK 1.2] setting a Frame unresizable
will visually remove the Frame’s Minimize
and Maximize buttons and disable those
system menu items.)

At times you may want to start your
main Java program’s window in a maxi-
mized state. You can initiate this action
with Pure Java methods by determining the
screen size, via the Toolkit class’s
getScreenSize() method, and then sizing
the window to the retrieved screen dimen-

Written with the help of the JNI, this
class can answer many questions

by Pat Paternostro

A Windows-Specific
Java Utility Class

JAVA PROGRAMMING TECHNIQUES

Figure 1: The JUtilTest program

83JUNE 1999

Visualize Inc.
Visualize is offering a

FREE 30-day evaluation
of VantagePoint or

DataVista Pro

See JDJ Special Offer at:
http://www.syscon.com/java/

specialsoftheweek.html

The Theory
Center

www.theorycenter.com

See JDJ Special Offer at:
http://www.syscon.com/java/

specialsoftheweek.html

reservoir labs
info@reservoir.com

See JDJ Special Offer at:
http://www.syscon.com/java/

specialsoftheweek.html

Wall Street Wise

www.wallstreetwise.
com/jspell.html

See JDJ Special Offer at:
http://www.syscon.com/java/

specialsoftheweek.html

84 JUNE 1999

sions. However, the presence of the Win-
dows taskbar or any other dockable desk-
top toolbar – such as Microsoft’s Office
toolbar – is not taken into account, result-
ing in the taskbar becoming obscured by
the window. Using the JUtil class’s setWin-
dowMaximized() method maximizes the
window without obscuring any dockable
desktop toolbars. To programmatically
minimize (iconify) a window use the JUtil
class’s setWindowMinimized() method.

Another useful JUtil method is the setWin-
dowRestored() method. This method
restores the specified window to its original
state before it is minimized or maximized. If
the window is minimized (iconified), it not
only restores the window’s original state, it
makes the window active (selected) as well.
(Note: Starting with Java 2, the Frame class
provides the setState() method to control
the Frame’s state. Passing Frame.NORMAL to
the setState() method will restore the Frame
to its original state whereas passing
Frame.ICONIFIED will minimize the Frame.)

In my opinion, the most useful of the
window-specific JUtil native methods is
setWindowAlwaysOnTop(). This method
allows you to set the specified window as
the topmost window in the z-order. Again,
you can achieve this behavior via pure Java
methods but the implementation always
seems to fall short of the desired behavior.
For instance, most programmers will imple-
ment the WindowListener interface on a
Frame and provide an implementation for
the WindowListener’s windowDeactivated()
method from which the Window class’s
toFront() method is called to keep the
Frame activated at all times. Unfortunately,
this results in not allowing the user of the
Java program to select any other applica-
tion currently visible on the desktop. The
true behavior of setting a window as the
topmost window in the z-order allows the
user to activate (select) any other applica-
tion window while keeping the topmost
window visible but deactivated.

I’ve noted where the newer versions of
the JDK (i.e., 1.1.7B and Java 2) obviate the
need for a couple of the JUtil methods.
However, the window-specific JUtil native
methods can be used to manipulate any
window from a Java program, not just the
Java program’s own windows.

I’ve included a Java test program (see
Figure 1) that exercises all of the JUtil meth-
ods. This test program along with the
javadoc generated HTML help file should
be sufficient to get you started using the
JUtil class.

Anomaly
I mentioned earlier that the JUtil class

contains native methods that manipulate
all of a window’s system menu items
except the Close menu item. These meth-
ods will either enable or disable the system
menu item and associated button (if any)

on the specified window. While disabling
these system menu items works flawlessly,
the opposite isn’t true. Using these meth-
ods to enable the window’s system menu
items will visually set the menu item as
selectable but won’t initiate the menu
action when the item is actually selected.
I’m at a complete loss to explain this
behavior as the Win32 API function used to
enable the menu items works without any
problem when called directly from a non-
Java Windows program.

Summary
The JUtil class and its associated DLL file

provides a Windows-specific solution for many
of the most frequently asked Java Usenet ques-

tions. Although the class is not comprehensive,
it is quite useful and can be used as a building
block for adding your own methods.

About the Author
Pat Paternostro is the director of education for
Tri-Com Consulting Group in Rocky Hill,
Connecticut. Tri-Com provides programming
services for a variety of development tasks. You
can reach Pat at ppaternostro@tricomgroup.com.

Where
Method Name Implemented Brief Method Description

getConsoleChar() C source file Retrieves the character typed at the
command console

getLogicalDrives() C source file Retrieves a system's logical drives

getFreeDiskSpace() C source file Retrieves the specified drive's free
disk space

getDriveType() C source file Retrieves the specified drive's type

getVolumeLabel() C source file Retrieves the specified volume's label

setVolumeLabel() C source file Sets the specified volume's label

getCurrentDirectory() C source file Retrieves the current directory

setCurrentDirectory() C source file Sets the current directory

getHwnd() C source file Retrieves the Win32 window handle for
the specified window

setWindowMinimized() C source file Minimizes the specified window

setWindowMaximized() C source file Maximizes the specified window

setWindowRestored() C source file Restores the specified window

setWindowRestoreEnabled() C source file Enables/disables the specified window's
Restore button

setWindowMoveEnabled() C source file Enables/disables the specified window's
Move system menu item

setWindowSizeEnabled() C source file Enables/disables the specified window's
Size system menu item

setWindowMinimizeEnabled() C source file Enables/disables the specified window's
Minimize button

setWindowMaximizeEnabled() C source file Enables/disables the specified window's
Maximize button

setWindowAlwaysOnTop() C source file Sets the specified window as the topmost
window in the z-order

setContainerDefaultFont() Java source file Sets the specified container's components
to the specified font

setMenuBarDefaultFont() Java source file Sets the specified menu bar's menus and
menu items to the specified font

copyFile() Java source file Copies the specified source file to the
specified destination file

ppaternostro@tricomgroup.com

The complete code listing for
this article can be located at

www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

Table 1: JUtil Class methods

85JUNE 1999

9NetAvenue

9NetAvenue is offering 3
months of FREE Java Hosting

to JDJ readers.
*Offer expires 6/30/99
Use code “”javadev”

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

86 JUNE 1999

IBM

www.as400.ibm

See JDJ Spec
http://www.sys-con.com/jav

87JUNE 1999

M

.com/hotapps4

cial Offer at:
va/specialsoftheweek.html

88 JUNE 1999

Cyrus Intersoft Delivers
Anytime, Anywhere
Computing
(Los Angeles, CA) – Cyrus Inter-
Soft, Inc., has released Speiros, a
pervasive network computing
platform that enables anytime,
anywhere computing.

Speiros delivers an environ-
ment in which a user can access
data, programs and services
from any Java-enabled device
anywhere in the world. With it, a
user can securely use any com-
puting resource – applications,
file systems, printers, e-mail or

other networks – from a desktop,
palmtop, set-top, kiosk or any
other network-capable device.

For more information go to
www.cyrusintersoft.com.

Secant Extreme Enterprise
Server for EJB
(Cleveland, OH) – The SecantEx-
treme Enterprise Server for EJB
provides a complete environment
for assembling, deploying and
maintaining scalable multitier
business systems. The product is
based on Secant time-tested and

proven Object Transaction Moni-
tor and object data management
technology. This technology
includes implementations of
CORBA ORBs and services such

as transactions,
security, persis-
tence, events, con-
currency and lock-

ing. Using the standard EJB to
CORBA Mapping, Secant Extreme
Enterprise Server for EJB pro-
vides a robust and scalable EJB
1.0-compliant container and serv-
er that provides the complete
deployment environment for
reusable enterprise beans. Visit
their Web site at www.secant.com
for additional details.

ZTI to Launch Java 2-
Compliant Version of O3
(Nepean, ON) – Zim Technolo-
gists International Inc. has
announced plans to release O3
version 2.0, a completely Java 2-
compliant business intelligence

software.
This tool
allows
users to

search, view, manipulate, analyze
and report data across the entire
enterprise.

ZTI’s O3 version 2 is targeted
to medium and large businesses
looking to consolidate and ana-
lyze massive amounts of data. O3
is a client/server, intranet-ready,

object-oriented OLAP solution
that supports interactive deci-
sion making. Anyone within a
company can graphically and
securely search, view, manipulate
and report mission-critical infor-
mation anytime, anywhere.

For details visit their Web site
at www.zti.com.

Elixir and Barr Partner to
Integrate Management and
Datastream Conversion
(Ventura, CA) – Elixir Technolo-
gies Corporation and Barr Sys-
tems, Inc., have signed a cooper-
ative marketing agreement that
will enable both companies to
enhance their enterprise-wide
document and data solution
offerings. Under the agreement,
both companies will have the
ability to resell each others’
products and integrate them
into comprehensive solutions
that address document composi-
tion, printing management and
datastream conversion.

For details visit the Elixir Web
site at www.elixir.com.

ObjectSpace Brings Its
Vision to EIS Council
(Dallas, TX) – ObjectSpace, Inc.,
a supplier of distributed comput-
ing solutions for the enterprise,
will join EAI market leaders in

the cre-
ation of
the Enter-
prise Inte-

gration Standards Council.
According to International

Data Corporation, the EAI market
is expected to approach $1 bil-
lion in products and services by
the year 2000. The council’s pur-
pose is to identify the scope of
business forces that are shaping
the enterprise integration mar-
ket, identify business problems
that enterprise integration is
intended to solve, establish a
common definition of enterprise
integration and define enterprise
integration terminology.

For more information visit
www.objectspace.com or
www.iswatch.com.

Cerebellum Rleases Version
1.2 of Development Platform
(Pittsburgh, PA) – Cerebellum
Software Inc. has developed
Cerebellum 1.2, the first of their
next-generation application
development
platforms
based on total
data indepen-
dence. This
makes it possible to quickly and
easily access, manage and com-
bine data in disparate, incompat-
ible sources.

Similar to the way Java offers
application developers OS inde-
pendence, Cerebellum provides
database developers with a plat-
form-independent development
environment and a single graphi-
cal user interface for accessing
data and visually creating
queries.

Additional details are available
from www.cerebellumsoft.com.

(San Mateo, CA) – Bruce Scott,
cofounder of both Oracle Cor-
poration and Gupta Technology
(now Centyra Software) formal-
ly launched his new startup to
facillitate growth of Internet-
based embedded database
applications. Scott founded
PointBase, Inc., formerly known
as DataBahn, to bring to market
a family of portable 100% Pure
Java embedded database prod-
ucts, including the industry’s

first corporate data “hotsync”
capability, to support e-busi-
ness, Web-based mobile work-
force applications and a range
of Internet appliances, such as

Web-based PDAs and set-top
boxes. For more information
visit www.pointbase.com.

Oracle
Cofounder

Launches New
Company

(Pearl River, NY) – Over the
past few months 15,470 JDJ
readers cast their votes for the

best Java
tools in 14
product cate-
gories. JDJ
Readers’
Choice

Awards, also known as the
“Oscars of the software indus-
try,” will be distributed at
JavaOne ’99 on June 15. This
year, one winner and two final-
ists will be awarded in each cat-
egory. For details visit www.
javadevelopersjournal.com.

(Pearl River, NY) – Java Devel-
oper’s Journal and SYS-CON
Radio have been named media
cosponsors of JavaOne ’99. SYS-
Con Radio will provide live cov-
erage of the conference, which
will be held from June 15 to
June 18 this year. “Tune in” to
www.javadevelopersjournal.com
for more information.

JDJ Readers’ Choice
Awards Winners
to Be Announced

at JavaOne!

JDJ and SYS-CON
Radio Named Media

Cosponsors of
JavaOne ’99

Bruce Scott of PointBase, Inc.
recently visited the JDJ offices

in Pearl River, New York

89JUNE 1999

Macromedia

Macromedia is offering a
FREE 30-day trial of
“Dreamweaver 2”

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

90 JUNE 1999

ADVERTISER INDEXADVERTISER INDEX

9NetAvenue, Inc. 85
www.9netave.com 888-9NETAVE

Activated Intelligence 91
www.activated.com 212-896-8220

Bateman, Inc. 91
www.batemaninc.com 805-383-3338

BEA WebLogic 2
www.weblogic.beasys.com 800-817-4BEA

Blue Sky Software 23
www.blue-sky.com 800-559-4423

borland.com 800-451-7788 x7183
www.interbase.com/products/demojdj.html 21

borland.com 800-336-6464
www.borland.com/jbuilder/ads/javadev 49

Computer Associates International, Inc.6
www.cai.com/ads/jasmine/dev 888-7JASMINE

Career Opportunity Advertisers 92-99
800-846-7591

Cerebellum Software 31
www.cerebellumsoft.com 888-862-9898

Cloudscape, Inc. 15
www.cloudscape.com 888-59JAVA1

Compuware Corporation 73
www.compuware.com/numega 888-686-3434

Cyrus Intersoft, Inc. 39
www.cyrusintersoft.com 612-331-6600

DevelopMentor 55
www.develop.com 800-699-1932

e-Business Journal 80
www.sys-con.com 800-513-7111

Elixir Technology 101/117
www.elixir.com.sg 65 532-4300

EnterpriseSoft 11
www.EnterpriseSoft.com 510-742-6700

FINDaHOST.com 40&62
www.findahost.com/host/jdj 440-257-6690

Flashline.com, Inc. 59
www.flashline.com 216-861-4000

Force 5 Software, Inc. 69
www.force5.com 408-735-0665

Advertiser Page

IBM Corporation 86-87
www.as400:ibm.com/hotapps4 800-772-2227

IMI Systems Inc. 75
www.imisys.com 800-828-0180

InetSoft Technology Corp 65
www.inetsoftcorp.com 732-235-0137

Inprise Corporation 13
www.inprise.com/appserver 800-336-6464

Insignia Solutions, Inc. 63
www.insignia.com 800-848-7677

Instantiations Inc. 42
www.instantiations.com 800-808-3737

InterLand, Inc. 67
www.interland.net 800-217-0985

Intuitive Systems, Inc. 51
www.optimizeit.com 408-245-8540

Java Developer's Journal 70
subscribe@sys-con.com 800-513-7111

Java Developer's Journal.com 81
www.sys-con.com 800-513-7111

KL Group Inc. 34-35
www.klgroup.com/jclass/look 888-328-9597

KL Group Inc. BC
www.klgroup.com/culprits 888-328-9597

KL Group Inc. 57
www.klgroup.com/truth 888-328-9597

Macromedia 89
www.macromedia.com 800-457-1774

Microsoft Corporation 44-45
www.msdn.microsoft.com/visualc 800-509-8344

NSI COM, Ltd. 81
www.NSI.com 877 480-3311

Object Domain Systems, Inc. 33
www.objectdomain.com 919-461-4904

Object International Software 47
www.togetherj.com 919-772-9350

ObjectSpace, Inc. IBC
www.objectspace.com/go/universal 800-OBJECT 1

OneRealm, Inc. 7
www.OneRealm.com/JDJ 303-247-1284

OpenLink Software, Inc. 37
www.openlinksw.com/virtuoso 781-273-0900

Oracle Corporation 17
www.oracle.com/info/32 800-633-1072 x23839

Progress Software Corporation 29
www.apptivity.com 800-477-6473 x4700

ProtoView 3
www.protoview.com 800-231-8588

Reservoir Labs, Inc. 83
www.reservoir.com 212-780-0527

Riverton Software Corporation 27
www.riverton.com 781-229-0070

Sales Vision 71
www.salesvision.com 800-275-4314

Sun Microsystems, Inc. 4
www.sun.com/service/suned 800-422-8020

SL Corporation 41
www.sl.com 415-927-1724

Slangsoft 79
www.slangsoft.com 972-375-18127

Specialized Software 800-328-2825 x6576
www.SpecializedSoftware.com/jdj/ 30

The Object People, Inc. 52-53
www.objectpeople.com 613-225-8812

The Theory Center 61
www.theorycenter.com 888-843-6791

Tidestone Technologies, Inc. 43
www.tidestone.com 888-880-0665

/training/etc, Inc. 91
www.trainingetc.com 410-531-9953

Visualize Inc. 83
www.visualizeinc.com 602-861-0999

Wall Street Wise Software 212-348-5031
www.wallstreetwise.com/jspell.html 83

WEB99 86
www.mfweb.com 800-441-8826

Zero G Software 25
www.ZeroG.com 415-512-7771

Zim Technologies International 77
www.zti.ca 613-727-1397

Advertiser Page Advertiser Page

91JUNE 1999

Activated
Intelligence

www.activated.com
See JDJ Special Offer at:

http://www.sys-con.com/java/specialsoftheweek.html

Bateman
Inc.

www.batemaninc.com

Training
Etc.

www.trainingetc.com

92 JUNE 1999

Employment Ad
new

93JUNE 1999

Employment Ad

new

94 JUNE 1999

Employment Ad
new

95JUNE 1999

Employment Ad
new

96 JUNE 1999

Employment Ad
new

97JUNE 1999

Employment Ad
new

98 JUNE 1999

Employment Ad
new

99JUNE 1999

Employment Ad
new

100 JUNE 1999

I’m sure you’ve often seen articles citing market research reports from high-powered indus-
try analyst groups. Market research is a multibillion-dollar industry in its own right, and major
economic and political decisions are often based on the information gleaned from these
reports. I’m also sure there have been numerous high-quality reports produced to examine
every aspect of Java – I’ve been fortunate enough to have seen a few. The problem is that these
reports are usually distributed only to the few decision makers who have the budget to afford
the hefty price tags they invariably carry. Sure, you can sometimes read the free one-page sum-
maries released to help promote these studies, but the full reports often cost many thousands
of dollars to purchase.

Not Just for Those Who Can Afford to Pay
So many of us in the Java developer community work independently or in small companies

that we may never be able to afford this type of industry intelligence, even though it could
potentially be invaluable to us. Too much guesswork dominates our decision making as a result,
but it doesn’t need to be this way. Great market research information and insights about Java
technology, the market and trends in the Java developer community should be available to all
of us, not just to those who can afford to pay. The JavaLobby is launching a new project to help
make sure this is the case – The Great JavaLobby Developer Survey of 1999. This new project
should be of interest to all of us, and particularly to the vendors who advertise here in Java
Developer’s Journal!

The idea is simple: we can use our own skills to develop and deploy a worldwide survey on
the Internet, and we can collectively benefit from the knowledge we gain. It couldn’t be easier.
And who better to teach us about the Java developer market if not ourselves? The Internet has
made it possible to gather this information economically and distribute the results – without
the services of those high-powered industry analysts who would gladly separate us from our
money, if only we had it. JavaLobby will endeavor to use quality scientific methods to gather
useful and statistically valid data – and we welcome the help and sponsorship of major Java
players to obtain the services of research experts. Most, if not all, of the results obtained from
the survey will be both public and free.

Three Steps to Success
Your help is needed to make The Great JavaLobby Developer Survey of 1999 a success, and

I hope you’ll be ready and willing to get involved. There are several ways you can help, and all
of them are easy. First, we’ll definitely need you to participate by responding to the survey. It
will be online, and you’ll probably be hearing about it from a lot of people. Details will certain-
ly be available at the JavaLobby Web site (www.javalobby.org). Second, we’ll also need you to
tell your Java friends and colleagues about the survey and ask them to take it as well. Finally,
we hope you’ll participate in the discussion of the results, which will undoubtedly supply some
food for thought and possibly some surprises. Overall, this should be a fantastic opportunity
for us, as a worldwide community of developers, to help ourselves!

Great Benefits
There will be great benefits in it for you, too. If we can work together to make this survey a

success, you should be able to enjoy a much more focused and detailed “big picture” of the Java
market and its shifting trends as a result. You should also be better able to understand how your
personal views compare and contrast with those of your Java developer peers around the
world. The survey should help you by providing you with better intelligence of your own to help
guide your personal career and product planning. It just may give us a glimpse into Java’s
future. Who knows?

It should be really exciting to follow this survey project as it unfolds, and I hope you’ll be
there to take part. It will undoubtedly be a learning experience for all of us. Thanks for reading,
and I’ll see you here next month!

The Great JavaLobby
Developer Survey of 1999

Your help is needed

by Rick Ross

Rick Ross is president and founder of the JavaLobby
(www.javalobby.org), which currently has more than
36,000 members. He is also president of Activated
Intelligence (www.activated.com) and can be
reached at rick@activated.com.

THE GRIND

“Great market

research

information

about Java

should be

available to

all of us”

rick@activated.com

101JUNE 1999

JavaOne
http://java.sun.com/javaone/

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

Borland and InLine
Software Sign Online
Distribution Agreement
(Leesburg, VA) – InLine Software
Corporation has announced a
distribution agreement with
Borland, which has agreed to
offer Assembly Line Standard,
InLine’s Enterprise JavaBeans
engine, for sale from its Web
site. Borland will offer it as a
standalone software product
and in conjunction with other
products, such as JBuilder.

Assembly
Line Standard
Edition, part of
InLine’s Assem-

bly Line product family, is
designed to automate the
process of building EJBs, mak-
ing it easier, safer and faster to
build, test, deploy, maintain and
upgrade enterprise-
scale applications
based on Sun
Microsystems’
Enterprise Java-
Beans technology.
A software plug-in, Assembly
Line Standard extends the func-
tionality of IDEs, such as Bor-
land’s JBuilder.

Visit www.borland.com or
www.inline-software.com.

Ensemble
Delivers Stronger
Integration
(Richmond, BC) – Systems
Inc. has announced the
availability of its latest
integration between Ratio-
nal Rose 98i and Borland
Delphi 4. Ensemble has
added new capabilities that
enhance and simplify genera-
tion and reverse engineering
of Object Pascal code between

Rational Rose 98i object mod-
els and Borland Delphi pro-

jects. Ensemble devel-
oped RDL 3 in an inclu-

sive effort
with Rose
Dephi Link
customers,
Rational Soft-
ware Corpo-

ration and Borland.
For more information visit

www.ensemble-systems.com.

Linux Support for MKS
Source Integrity
(Waterloo, ON) – Mortice Kern
Systems Inc. has announced
its support for the Linux oper-
ating system, making MKS
Source Integrity, a component
of MKS’s enterprise software
management solution (the
MKS Integrity
Framework),
immediately
available for
the Linux plat-
form. The
company also
pledged long-
term support for Linux, indi-
cating the popular OS will con-
tinue as a key supported plat-
form for MKS in future releas-
es of MKS Source Integrity.

For more information visit
www.mks.com/solution/si/.

USA.NET Names MCI
WorldCom Exec as
President and CEO
(Colorado Springs, CO) –
USA.NET, a provider of e-mail
and advanced electronic mes-
saging solutions, has appoint-
ed John Gerdelman as its new
president and CEO. Gerdel-
man, a former president of
MCI WorldCom, has more than
20 years of sales, marketing,
network and information tech-
nology experience.

The addition of Gerdelman,
who will oversee strategic
operations of USA.NET, diversi-
fies USA.NET’s leadership and
creates a reorganization of the
company's management team.

Visit www.usa.net.

♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

(Honolulu, HI) – Referentia Systems Incorpo-
rated and Borland, the software development
tools division of
Inprise Corporation,
have released an updated
version of the popular Building
Database Applications interactive
multimedia training volume for
JBuilder 3.

The training volume
will help JBuilder 3
users build database
applications quickly and efficiently. It fea-
tures over 45 in-depth lessons and concept

animations covering key techniques for devel-
oping Java database applications. Users will
gain a strong undersatanding of the JBuilder
data model, master a solid foundation of
essential and advanced database techniques,
and learn various development startegies. The
updated content covers the new database fea-

tures and functionality of
JBuilder 3, with upgraded
examples using dbSwing
components.

For more informa-
tion visit their Web site at

www. referentia.com.

Referentia Systems Provides
Multimedia Training for JBuilder 3

(Helsinki, Finland) –
Innoview Data Technologies
has announced that all
recent Multilizer product
upgrades add enhanced sup-
port for the whole localiza-
tion team. The technical
improvements benefit indi-
vidual users and
simplify
the work
between
team
mem-
bers,
increas-
ing pro-
ductivity.

The power of the architec-
ture lies in the fact that
everyone on the localization
team works with the same
resource, called dictionary.
In practice this means that
developers use Multilizer
components for making the
software access the transla-
tions. Linguists work with
dictionaries, using Language
Manager, which automates
many routine tasks and
ensures linguistic consi-
stency.

More information is avail-
able on Innoview's Web site
at www.multilizer.com.

Innoview Announces Advanced
Support for Localization Team

103JUNE 1999

DataReturn

www.datareturn.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

104 JUNE 1999

On April 28 of this year we attended an
insightful Crossfire Webcast event entitled
“Messaging vs Distributed Object Technolo-
gies” hosted by Bill Ruh from Concept Five
Technologies. On the program were Richard
Soley, CEO of Object Management Group, and
Thomas Laffey, CTO of Talarian Corporation.
Marcus Shipley, Director of Enterprise IT Archi-
tecture, USAA, was also a participant. Marcus’s
job was to stipulate requirements for middle-
ware products used in enterprise application
integration and advanced e-business systems
development. Richard was advocating middle-
ware solutions based on the OMG CORBA
model, and Thomas was speaking in favor of
messaging based on the publish/subscribe and
the message queuing model.

For those of you who didn’t tune into this
one-hour conversation, we’ll briefly summarize
what we think was the essence of the debate.
Electronic business systems are becoming
more distributed, heterogeneous and complex.
Furthermore, the demands on availability,
responsiveness, extensibility and integration
with existing applications are increasing.

CORBA middleware is well accepted as it
provides a standard way of building distrib-
uted, heterogeneous systems using typed inter-
faces and a request/reply-style interaction.
Messaging systems, on the other hand, provide
an easy-to-understand programming model and
have been successfully used in some of the
most mission-critical financial information sys-
tems worldwide since the ’70s.

All the participants readily agreed that both
kinds of middleware are required for next-gen-
eration enterprise application integration and
e-business systems, and that none of them can
do the job alone. In this short article we’ll talk
about messaging middleware for the Java plat-
form as folks from the Java community are
probably more familiar with the ORB type of
middleware than with messaging middleware.
We’ll talk about Sun’s Java Message Service
and about SoftWired iBus, a novel messaging
solution for the Java platform.

What Is Messaging, Anyway?
Messaging is a model of distributed com-

puting in which applications communicate by

exchanging self-describing message objects. A
sending application can create a message
object, put data such as a stock quote into the
message, label it with information about its des-
tination and submit it. The receiver of the mes-
sage extracts the information and processes it.

Now there are at least two fundamentally
different ways of implementing messaging mid-
dleware: message queuing and publish/sub-
scribe. The models differ mainly in quality of
service and how messages are addressed.

Both models are important because they
have many application areas and are easy to
understand. This allows developers to become

productive more quickly. Both models have
been used successfully for many years in the
areas of financial transaction processing, man-
ufacturing automatization, real-time informa-
tion delivery and systems integration.

A problem with messaging middleware is
that only now are API standards starting to
emerge, and many of the solutions in this area
are proprietary and often somewhat outdated
as they were designed years ago. Recently
there has been a surge of innovation with the
emergence of the Java Enterprise platform.
Two such innovations are the Java Message
Service (JMS) and the SoftWired iBus messag-

ing middleware. The latter is one of the few
implementations of JMS done from the ground
up and purely in Java.

JMS – The Java Message Service
JMS provides a standard way for Java appli-

cations to create, send and receive an enter-
prise messaging system’s messages. JMS was
developed by Sun Microsystems’ JavaSoft divi-
sion and is an integral part of the enterprise
edition of the Java platform.

JMS covers both message queuing (a k a the
JMS point-to-point model) and publish/sub-
scribe. The standard demands that at least one
of the two models be implemented to claim
JMS compliance.

The point-to-point model is about working
with persistent queues of messages. It is point
to point in that a client sends a message to a
specific queue, and a receiver can pick it up
from the queue. This model can be thought of
as “a reliable e-mailing system for applica-
tions.” The advantages are that sender and
receiver need not be running at the same time
and that high reliability is guaranteed as mes-
sages won’t be lost in case of a failure caused
by the sender, receiver or queue handler. The
disadvantages are that performance suffers
from the fact that all messages are passed via a
queue handler and that this type of system is
not well suited for fast one-to-many delivery of
messages, or to transmit business events in
near-realtime.

The JMS publish/subcribe model defines
how JMS applications publish messages into
channels and subscribe to those channels to
receive the messages. This model works much
like radio transmission, with senders and
receivers communicating in a decoupled way
using a “transmission channel” metaphor. It’s a
group communication model that allows a mes-
sage to be sent efficiently to a dynamically
growing and shrinking set of receivers. The
advantage is that senders and receivers can
easily “tap” into channels to exchange mes-
sages in a one-to-one or one-to-many fashion.
Although the JMS publish/subscribe model pro-
vides an option for making messages persis-
tent, it doesn’t allow control over persistent
messages provided by the point-to-point
model.

JMS will become important by offering
sophisticated messaging services to applica-
tions running as standalones or inside an EJB
server.

SoftWired iBus provides a messaging
solution for the Java platform

Electronic Business Systems
A Case for Messaging Middleware

FIRST LOOK

by Marcel Altherr, Martin Erzberger & Silvano Maffeis

“Messaging is a
model of distributed
computing in which

applications
communicate by

exchanging
self-describing

message objects”

“Messaging is a
model of distributed
computing in which

applications
communicate by

exchanging
self-describing

message objects”

105JUNE 1999

iBus – Messaging Purely in Java
JMS is provided in the form of a specification

document and a set of Java interfaces. The idea
is that vendors of messaging products will pro-
vide a compliant implementation. This is what
SoftWired Inc., a company specializing in Java
messaging solutions for e-Business, is doing.

Our flagship product, the SoftWired iBus, is
a messaging middleware written completely in
Java. iBus has been available since late 1996
and is actively used in many projects world-
wide. The core of iBus consists of a light-weight
(a 170 kb JAR file) publish/subscribe message
bus with a JavaBeans API. The JMS-compliant
version of iBus provides the publish/subscribe
functionality required by JMS.

A discriminating feature of iBus is versatili-
ty. The system can run atop virtually any com-
munication protocol. iBus version 2.0 can
transmit messages via reliable IP multicast,
TCP and UDP. Extending iBus to use APIs for
infrared or satellite communication is fairly
straightforward. Although e-business systems
are our main application area, iBus is well suit-
ed also for embedded systems applications.

Of course, iBus and JMS alone can’t provide
a complete messaging solution for e-business
systems. The iBus product line thus consists of
JMS, interfaces to applications written in C and
C++, HTTP tunneling gateways, VPN-like
bridges for forwarding messages from one
intranet to another, and security based on the
SSL standard.

Outlook
We envision messaging solutions such as

iBus to be used as a “backplane” in building
scalable, robust e-business systems that inter-
connect business objects running in applica-
tion servers, naming services, database
servers and legacy information systems, and
clients running in Web browsers. Those sub-
systems will be implemented using a variety of
techniques and standards, notably CORBA,
RMI, EJB and proprietary tools. Messaging sys-
tems allow us to let those subsystems talk to
each other using a natural and proven mecha-
nism – namely, the exchange of user-defined
message objects.

Resources
• iBus messaging solution

(download):www.softwired-inc.com/ibus
• JMS standard: http://java.sun.com/prod-

ucts/jms
• EAI Crossfire Webcast events: www.con-

cept5.com/crossfire
• SoftWired Inc., info@softwired-inc.com,

www.softwired-inc.com

About the Authors
Marcel Altherr, Martin Erzberger and Silvano Maffeis
together form the management of SoftWired Inc.,
which specializes in middleware solutions for
electronic business applications. They can be
reached at info@softwired-inc.com.

info@softwired-inc.com

Subscribe
Today
and

receive
the

“CFDJ
Digital

Edition”
FREE

at
COLDFUSIONJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

Subscribe
Today
and

receive
the

“JBDJ
Digital

Edition”
FREE

at
JBUILDERJOURNAL.com

1800-513-7111
or subscribe online for faster service
subscribe@sys-con.comG

E
T

Y
O

U
R

 O
W

N
!

106 JUNE 1999

During the development of our applets we
discovered two problems. First, they all had
different parameters for essentially the same
action; second, the conversion of the parame-
ters was done to varying levels of reliability. A
reliable collection of methods to fetch para-
meters proved to be an invaluable way to
ensure that all our applets used the same
parameter names for the same actions and
that the conversion of the parameters was
done consistently and reliably.

Design Decisions
The primary objective of this class is to

provide reliable reusable methods to fetch
parameters. To accomplish this objective we
required that the methods run and return
meaningful data despite any errors in the
parameters.

An assumption was made that this object
would run only with applets, and that error
messages, if generated, would not generally
be seen. Therefore, error messages were
deemed of little or no value. If a parameter
isn’t provided or is invalid, that parameter’s
method will return a default value. In addition,
where it made sense, we decided that all para-
meter methods should return the type of the
parameter, that is, a color parameter will
return a color. In some cases conventions
were established to reflect ease of use in the
invoking code.

In the initial design we examined building a
message object and associate methods with
such attributes such as color, font style and
direction. This proved limiting, as only a rela-
tively small subset of our applets actually had
messages associated with them. This
approach could have also yielded a larger
number of classes to download with a con-
comitant degradation in load and runtime.

The decision not to build a message
object had an unforeseen ramification. If
the message was not an object, then the
font definition for the message would have
to be done by the applet not in this object.
While initially irritating, we came to view
this as a feature. We discovered that while
we frequently changed the font size and
style, we almost never changed the type-
face. We actually decided to leave it out of

the final object as it didn’t seem necessary!
The color determination function proved

so ubiquitous in both applets and applica-
tions that we decided to break it out as a sep-
arate object. The fundamental function of this
object was to receive either a hexadecimal
color code or a string for a Java-supported
color and return the color equivalent of that
color string.

In the initial version of this class we ran
most of the type conversions “commando,”
without the try and catch. The assumption
was that the user was a technical user and
would see the error and correct it. This
proved to be a poor coding technique and
resulted in unpredictable behavior that was
difficult to debug.

In many of the applets there was a ten-
dency to get all the parameters in the INIT()
method and store them in variables. This
caused problems for two reasons. First, the
INIT() method is called only once after the
initial applet load, while the START() method
is called on every refresh, so a change in a
parameter can be updated with a refresh.
This is a very useful feature when fine-tuning
a Web page. Second, the parameter is stored
already. There is no reason to have a second
variable for the same data. When you need it,
use its associated “get” method. The advan-
tage of this approach is that the values can
change “dynamically” and are only fetched if
and when they are required. This approach
lowers the initialization time by distributing

the parameter load time across all methods.

Determining Color
On the Web, color is everywhere. Many of

our applications need and use color informa-
tion as well. At minimum, an applet will need
a foreground and background color; perhaps
frames, panels or canvases will need addition-
al color data as well.

A single method class to provide color
determination seemed the optimal solution.
The data can have only three formats and
there was no easy way to separate them with-
out analyzing the string data first. We also
wanted to ensure maximum flexibility for the
Web page developers by giving them as many
choices as possible. This yielded a compact
and efficient object that met all the criteria
outlined above.

Because of the diversity of applications in
which this class could be used, we elected to
derive it from object rather than java.awt.Color,
which seemed the most obvious point for it to
extend from.

The function of this object is to translate a
string that represents a color into that color. It
fundamentally creates an expanded decode
method that is available in java.awt.Color
(Java version 1.1.x), by providing the ability
to pass “#” initialized strings (as in HTML) or
actual color names. Decode is not available in
Java version 1.0.2, and this object must pro-
vide backwards compatibility for the most
popular Web browsers. This class must imple-
ment its own decode-like logic. The original
intent of the class was to work with applets.
The decode method in version 1.1 supported
decimal and octal options, but they won’t be
supported in this class.

This object contains one function, Deter-
mineColor(String). The string may be one of
three formats: a Java-supported color name, a
six-digit hexadecimal number or a six-digit
hexadecimal number preceded by a “#”. The
Java-supported color names are black, blue,
cyan, dgray (for dark gray), gray, green, lgray
(light gray), magenta, orange, pink, red, yel-
low and white. The reason behind the support
of the “#” preceding the hexadecimal digits is
that this is a supported format in HTML, and
it would facilitate copying the colors into the
parameter fields of an applet.

If the string is not a Java-supported color
name, then it is tested to determine if it is a
valid hexadecimal number. If so, it is converted

Fetch Parameters
Providing a reliable method to fetch

and reuse your parameters

JAVA APPLET CODING

by Mark Northrup

“… the START()

method is called on

every refresh, so a

change in parameters

can be updated

with a refresh”

107JUNE 1999

NetBeans

www.netbeans.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

108 JUNE 1999

into a color and returned. If it is not a valid num-
ber, the color is set to black. If the number is not
the “proper” length, the color is set to white.

The Parameters
When we started this project we thought

that the message would be the most common
parameter. A survey of our applets showed
that the colors and the dimension parameters
were actually the most common. Following
those were speed and direction.

The color parameters use the Determine
Color class to return the color passed in the
parameters. The parameters are “color_t” and
“color_b”, and the related methods are get-
ForegroundColor and getBackgroundColor. If
the value is missing, the default foreground
color is white and the default background color
is black. For either parameter, if the parameter
is not acceptable (as outlined above in Deter-
mining Color), the returned color will depend
on the error in the parameter.

The dimension parameters are used most
frequently in the applet resize method. The
parameters are height and width. The relat-
ed methods are getHeight(Applet) and
getWidth(Applet). Each method returns an
integer. If the value is missing, the default
width becomes 100 and the default height is
20. However, if it’s invalid, the default width
becomes 150 and the default height
becomes 25.

The “speed” parameter is most frequently

used in the Thread.sleep(long), which is the
number of milliseconds to pause before con-
tinuing. Thus this parameter may also be used
as a pause delay setting for a continuous oper-
ation. The default speed is 100 if the value is
missing and 150 if it is invalid.

The direction parameters are probably the
most unusual of this collection. Instead of
returning a direction, it returns a signed inte-
ger. There are only three values it can have, +1,
0 or -1. These values were chosen to assist the
computations for animation. We encountered
scenarios in which we supported both hori-
zontal and vertical motion; the parameters
allowed us to define the type of motion for a
particular implementation. Graphics areas
start with the top left being 0,0. While the x-axis
follows the algebraic notation, the y-axis is the
opposite. It is best to think of this as an
absolute value rather than signed. Horizontal
scrolling is accomplished by incrementing to
go to the right and decrementing to go left.
Also, vertical motion is achieved by increment-
ing to go down and decrementing to go up.

The “message” parameter uses the
getMessage(Applet) method to obtain a String
message. There is no editing of the string. The
default is “17 Web Place”.

To date, only two font attributes were found
to be of any interest; their parameters are
“font_size” and “font_format”. These parame-
ters will be fetched using getFontSize(Applet)
and getFontFormat(Applet) methods. Both

methods return an integer value – either the
font point size or the integer equivalent to for-
mat (bold, regular, italic). The default font size
is 12 if the value is missing and 10 if it is invalid.
The default font format is “PLAIN”.

Conclusion
This class provides a convenient, standard

and reliable collection of methods to fetch
parameters and use them in a wide collection
of applets. The advantages of this encapsula-
tion over a simple getParameter() method
invocation are:
• All or most parameter names are consistent

across all of the corporate applets.
• Standardized methods ensure reliable con-

version, standard defaults and return val-
ues.

• The added flexibility leads to a more robust
use of parameters than is common in most
applets.

About the Author
Mark A. Northrop has 18 years of experience on
MVS, TPF, VM, RSX-11M-Plus, Windows 95,
Windows NT, Unix and VMS operating systems,
supporting systems and application software. He
is a cofounder of 17 Web Place and is currently a
technical engineer at Trans-World Airlines. Mark
can be reached for questions or comments at
MAN_Fam@TFS.Net.

JDJ Advertising
www.sys-

con.com/java/adnews.htm
See JDJ Special Offer at:

http://www.sys-con.com/java/specialsoftheweek.html

MAN_Fam@TFS.Net

109JUNE 1999

Object Management
Group

www.omg.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

110 JUNE 1999

SYS-CO

Tune into JDJ’s Exclusiv

See JDJ Spe
http://www.sys-con.com/ja

111JUNE 1999

N Radio

ve JavaOne ‘99 Coverage

ecial Offer at:
ava/specialsoftheweek.html

112 JUNE 1999

Any discussion of the Java reflection class-
es first has to explain their importance and
the types of tasks that can be solved with
them. The Java reflection classes can help
solve many generic tasks by abstracting out
the task from the specific use of the task. The
reflection classes provide a dynamic (run-
time) way to find out information about a
class: its methods, fields, inheritance, inter-
faces and so on. By understanding the reflec-
tion classes, many repetitive tasks can be
made generic and quickly applied to a large
set of classes. Some examples include auto-
matic creation of classes to create objects
from a class name, SQL statements and XML
(Extensible Markup Language) generation.
This article offers an overview of the reflec-
tion classes, a simple analysis and design for
generating XML, an explanation of its imple-
mentation and, hopefully, some insights into
Java programming.

The AutoXML class and the AutoXMLable
and XMLable interfaces were written for this
article, which also uses the classes Person,
FullName, Address and SampleXML to demon-
strate the use of the AutoXML class. My ulti-
mate goal is to demonstrate the creation of
XML for any class with the following code:

String myXML=AutoXML.toXML(myObject);

Overview of the Reflection Classes
In general, the Reflection classes help

describe and manipulate a Class, a Field and a
Method, and have supporting classes to
describe a class Constructor, an Array and a
field or method Modifier. (The class for reflec-
tion permissions and an InvocationTargetEx-
ception are not covered here.)

To navigate through the many classes and
methods, just remember the basics of Java: an
object is an instance of a class and has a get-
Class() method. The object returned is of type
Class. The name of the class can be obtained
by using the getName() method. This is impor-
tant because the AutoXML tagname in general
is the same as the class name (without the
package name). A class has attributes
(obtained by getFields), which can then be
manipulated. A class has methods that are
obtained by getMethods(). A method can take
parameters, obtained by getParameterTypes().

A method has a return value, which is obtained
using getReturnType(). Finally, class attributes,
methods and the method’s return object can
have modifiers (public, static, primitive, etc.)
and can be obtained using getModifiers().

Unlike the other methods, getModifiers()
returns an int, and you should call the appro-
priate static method to determine the specific
property of the modifier. For example:

int currentModifier =
currentMethod.getModifiers();

if (Modifier.isPublic(currentModifier))
{System.out.println("Method is public");}

There are many methods in java.lang.reflect
for getting an int, a double, etc. The key to
reducing the complexity of programs is realiz-
ing that the method get() returns an object and
that String.valueOf () can handle all of the nine
primitive types.

Task Description: XML
XML is a format that describes data and is

becoming popular on the Internet. XSL (Exten-
sible Style Language) is used to change the
presentation of the XML data. For more infor-
mation on the specifications and benefits of
XML, check out www.w3c.org/.

The XML data is between a “tag” that
describes the type of Data. The code in Listing 1
might be used to describe a class called Full-
Name having attributes of FirstName, Middle-
Name and LastName. Contained objects have
their respective XML within the tag of the con-
tainer. Expanding the above example to describe
a Person might look like the code in Listing 2.

This fits into an object-oriented framework
quite easily. Each class only needs to know
how to generate its own XML piece according
to the following procedure (assuming each
class has a method called toXML()) in a
method called toXML():
1. Put classname between beginning tag delim-

iters.
2. If the attribute is an array, iterate over the

entire array for steps 3–7.
3. For each attribute, put the attribute name

and optional indices within a tag.
4. If the attribute is a primitive type, append

the value of the attribute.
5. If the attribute is a complex object that is

XMLable (implements XMLable), then call
the object’s toXML method.

6. After each attribute, append an end tag for
the attribute.

7. After all attributes are XML’d, append the
end tag for the object.

The drawback of this direct implementa-
tion approach is that someone needs to look at
each class that might be affected and at the
possible attributes and contained objects,
code the routine and test it.

Another way to approach the task is to look
at a specific class, determine whether it
should be included in the XML output and go
through each public accessor method to cre-
ate the XML output. This approach requires
coding and testing one class and an interface.
The drawback is that each object is inspected
at runtime to determine the attributes and
objects to include. The usefulness of this
approach is that adding automatic XMLability
to a new class is trivial.

Another approach attacks the problem
from the source side. You can parse through
each class (either by file or by class), find the
class definitions, build the toXML() and
append the code to the class definition.

These two approaches highlight the classic
problem of whether to build it now (at compile
time) or build it later (at runtime).

This article takes the dynamically generated
approach, using the methods to get the XML
information. The methods could also have been
written to use the class attributes, but this does-
n’t demonstrate enough of the Reflection class-
es. The procedure to dynamically create XML
code is similar to the procedure to hard-code
XMLability, except when dealing with embed-
ded arrays and collections. The JDK 1.2 has the
interface Collection, which unified accessing
Vectors, Lists, and so on. This interface has the
method toArray(), which returns an array rep-
resentation of the Collection. To write a routine
for arrays, you need to be aware that Java
arrays don’t have to be symmetrical. In Java you
can have an array that can look like the array in
Listing 3. This Array doesn’t have memory allo-
cated for myArray[1][2],myArray[1][3], and
myArray[2][3] because those elements don’t
exist.

To create the XML for an array of unknown
dimensions, a recursive method called
parseArray was added. It was the trickiest part
of the AutoXML class to get right. This recur-

Use the Java reflection classes to
dynamically create XML

Reflecting on XML

XML & JAVA

by Daniel Rosengarten

113JUNE 1999

PointBase

www.pointbase.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

114 JUNE 1999

sive type routine is necessary to iterate over
all of the objects.

Another point to mention about the design
of AutoXML is that someone else might want
to implement his or her own toXML() in cer-
tain classes. Automatic generation might be
priceless at development time, but if perfor-
mance needs to be improved, it’s important to
provide a way. By adding an interface
XMLable, the AutoXML class now understands
two interfaces: AutoXMLable and XMLable. if
the XML of class is to be automatically gener-
ated, the class should implement AutoXM-
Lable. If the class has its own implementation,
XMLable should be used. Finally, if the object’s
class doesn’t implement either interface or is
null, it should be skipped.

When trying to build XML, it’s important to
have the ability to select the classes. Security
classes are a good example of classes that
shouldn't be able to be used automatically by
the AutoXML class. This is accomplished by
using two interfaces: AutoXMLable and
XMLable. If the class implements XMLable, the
AutoXML class will call toString(). If the class
implements AutoXMLable, the AutoXML class
will build the XML for the class. If the class
doesn’t implement either interface, the class
will be skipped and an empty string will be
returned.

Another area that deserves attention is the
invoke method in class Method. This allows a
function to be dynamically called on an instan-
tiated object. This is used to get the objects
contained in the current object and could
cause a potential problem if the class has a
function similar to the one below:

public getNextNumber() {return
++currentNumber;}

The AutoXML class won’t be aware the
object is being changed and will go merrily on
its way, so be careful about method names. A
better name might have been nextNumber().

Example
The example is a set of very simple classes

for Person, FullName and Address. The Sam-

pleXML class demonstrates the ease of use of
the AutoXML class. The XML is given in Listing
4. Person and Address implement the AutoXM-
Lable interface, allowing AutoXML to create
the XML. FullName implements XMLable to
provide its own way of creating the XML tag.
The classes have been kept simple for demon-
stration purposes, but feel free to change the
example classes. Change getAddresses() into
an array… make two-dimensional arrays of
Fullname. Experiment with the class defini-
tions and see how the XML is generated.

A Walk in the Code...
The program begins in SampleXML::main().

This creates a Person named John Doe having
two addresses.
• Next, AutoXML::toXML() is called (passing

the object to be AutoXML’d) and outputs
the results.

• toXML() first checks to ensure that the
object passed is not null, gets the name of
the object’s class name, strips the package
name,calls parseclass and then wraps the
result in a tag.

• parseClass() iterates over the methods in
the class to determine if the method will
return a useful piece of data. Following
bean-naming guidelines, only the prefixes
get and is (if the return type is Boolean) are
understood. Also, the method must be pub-
lic nonstatic. The method name is stripped
of its prefix. if the return parameter is a
primitive, a string or date, the tag is creat-
ed for the attribute; otherwise the returned
object is broken down into its subcompo-
nents (in expandClass()) or array elements
(parseArray()).

• expandClass() if the return parameter is
AutoXMLable, XMLable or Collectable. The
method is invoked and the result is sent to
toXML()

• parseArray() takes an n-dimensional array
and recursively reduces the dimension of
the array until it is a one-dimensional array
that can be iterated over. If the result isn’t
primitive, the array object is sent to
toXML().

• wrapTag() puts a tagname into parameters,

and information into an XML tag.

What Isn't Covered in the Example
The reflection classes have a few very use-

ful methods that weren’t needed for the
AutoXML class. The most powerful, Class.for-
Name(String ClassName), is a simple method
that returns the class object represented by
the String passed. In combination with the
newInstance() method, an object can be creat-
ed (calling the constructor without parame-
ters) by knowing only the name of the class.
This opens the door for dynamically adding
functionality to a program without recompil-
ing. But that’s another article.

I also didn’t cover security, determination of
inheritance structure, class loading or hashing
capabilities. Nor did I cover XSL, which
describes the formatting of the XML data.
Microsoft has a tool to combine XML and XSL to
create HTML ouput. An equivalent AutoXSL
class that is similar to the AutoXML class can be
created. The difference is that XSL would create
tags without the data being embedded. Listing 4
shows an example of XSL. Try to write the class
yourself, using the AutoXML for the algorithms.

Conclusion
As the example shows, the reflection class-

es are extremely useful for adding functionali-
ty to a program. With these classes you can
easily create generic routines, scripting
engines and more dynamic programs.

About the Author
Daniel Rosengarten, a senior systems analyst at
Sanford C. Bernstein, is involved in the development
of several OO financial systems using C++,
PowerBuilder, Visual Basic and Java. A Sun-certified
Java developer, he has an MBA from the University of
Arizona and a BS in electrical engineering. Daniel
can be reached at 70451.2212@compuserve.com.

<FULLNAME> <FIRSTNAME>Daniel</FIRSTNAME> <MIDDLENAME>Joel<MID-
DLENAME><LASTNAME>Rosengarten</LASTNAME></FULLNAME>

<Person><Addresses
index1="0"><Address><City>AZ</City><Street>123 Main
St.</Street><Zip>85715</Zip></Address></Addresses><FullName>Jo
hn Doe</FullName></Person>

myArray[1][1] = 1
myArray[2][1]=201
myArray[2][2]=202
myArray[3][1]=301
myArray[3][2]=302
myArray[3][3]=303

<Person><AddressArray
index1="0"><Address><City>AZ</City><State>Tombstone</State
><Street>1313 Mockingbird
Ln</Street><Zip>85500</Zip></Address></AddressArray><A
ddresses
index1="0"><Address><City>AZ</City><State>Tucson</State><Stree
t>123 Mai
n St.</Street><Zip>85715</Zip></Address></Addresses><Addresses
index1="1"><Addre
ss><City>AZ</City><State>Tombstone</State><Street>1313 Mock-
ingbird Ln</Street><Z
ip>85500</Zip></Address></Addresses><FullName>John Doe</Full-
Name></Person>

Listing 4: SampleXML class output

Listing 3: A Java Array

Listing 2: Sample XML code for objects with arrays

Listing 1: Sample XML code for object

70451.2212@compuserve.com

The code listing for
this article can also be located at
www.JavaDevelopersJournal.com

▼▼▼▼▼▼ CODE LISTING ▼▼▼▼▼▼

115JUNE 1999

Allaire

www.allaire.com

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

116 JUNE 1999

Every year I find myself
contemplating the dramat-
ic changes in the Internet
industry over the previous
year. And every year the
changes seem more dra-
matic, more exciting – and,

most important, clearer. Everyone involved in
the Internet industry does the same thing, I’m
sure, and as part of this ongoing reflection we
try and find meaning in a few major concepts to
help us grapple with all the change and oppor-
tunity. These concepts typically end up in buzz-
words that we internalize and then attempt to
indoctrinate our peers (and customers) with
this new understanding.

For example, in 1993, “the Internet” meant
“Online Services,” which meant AOL, Com-
puServe and Prodigy. This was about as com-
plex an idea as people could come up with, and
given how vague and overwhelming it all
seemed, that was probably okay.

So it was for the next six years. Each year
we in the industry tried to figure out what it
was all about, building products and services
to support it, and, most important, giving it a
name, or a concept. We need (and needed)
these keywords and concepts, which we used
to map complex technology to business or con-
sumer reality.

In 1994 and 1995 it was the “Internet,” which
meant “wild-wild-west,” “experimentation” and
“new opportunities,” but that’s about it. After
people (including many of you) began to really
work with the technology, they figured out
there were opportunities beyond building
brochure-ware Web sites. They saw there were
real opportunities in automating a business
and leveraging the incredible cost economies
of the Web computing model, and in reaching
new customers. Thus they were dubbed “e-
commerce” and “intranets.” People finally
understood this computing model wasn’t about
brochures, but about changing how informa-
tion and products were used, created and sold.
In fact, for quite some time, most companies
focused exclusively on intranets and the
unbounded opportunities that lay therein.

Sometime in late 1996, and into 1997, the
concept of the “extranet” emerged. This was a
site that was NOT an Internet site, but also
NOT an intranet site; still deployed on the Inter-
net, but secured like an intranet. Whoa! But it
did have meaning, and that meaning was that
you could use the Internet to tie together com-
panies and organizations in a way that wasn’t
possible before.

Since 1997 and through 1998, we’ve taken
these concepts and run with them. We’ve built
products and services that enable these terms
and concepts and we use them fluidly in selling
what we do to our customers.

During this time some pretty significant
things have been happening in our industry, all
of which bode well for our future. First, corpora-
tions are finally “figuring out” the value of the
Web. After years of experimentation, working
with early adopter technology and through the
inevitable pressures of customer feedback and
competitive threats, many corporations are now
at a point to fully embrace the Web business and
computing platform throughout their business,
even reinventing their business around this new
economy. Second, we’ve seen the spectacular
success of the most visible Internet companies,
the e-commerce portals and “dot com” players.
We’re seeing this, aspiring and learning, and real-
izing that the earth is moving beneath us. And
finally, all of this hard work and learning is estab-
lishing best-practices in both the technology
infrastructure and the business and organiza-
tional models. Indeed, these three trends, hap-
pening over the past year or so, indicate that
we’re on the verge of a massive mainstream
explosion in adoption of the Internet.

Out of all this, of course, must come a new
organizing concept, one that ties together every-
thing we’ve learned and becomes the basis for
how the mainstream thinks about and creates
the next wave of Internet business. I believe the
organizing concept we’ll come to know, speak
and understand is the “Portal.” Everywhere I go
I hear customers talk about building a “Family
Portal” or a “Kids Portal,” and, most recently,
and perhaps most significantly, an “Enterprise
Portal.” Increasingly, it seems, “Portal” has come
to mean “successful Internet site” or “successful
Internet business,” and no longer carries its orig-
inal meaning, “search engine.” I strongly believe
that the Enterprise Portal is the right organizing
concept for furthering our work.

Understanding Enterprise Portals
An Enterprise Portal is the combination of

software and technology infrastructure, new
business models and new organizational struc-
tures that combine to create an Internet-centric
business. In short, an Enterprise Portal is what
companies need to build in order to become
Internet-centric companies. In my estimation,
Enterprise Portals reflect three distinct obser-
vations about the Internet business landscape.

The first is the realization that truly Internet-
centric companies don’t view their Internet,
intranet and extranet systems as separate.
Instead, they see the pervasiveness of the Web
simply as a part of their business. An Enterprise
Portal represents this idea. Your Web systems
become a portal to your entire business -- inter-
nally, for your employees managing their work,
then extending out through private and secure
interfaces to customers, suppliers and part-
ners. The Enterprise Portal allows us, for the
first time, to think of the Web as the fabric of
our business, and recognizes the reality that
Web systems aren’t about isolated corporate

applications, but about an overall approach to
doing business in the Internet economy. Indeed,
with Enterprise Portals the Web becomes your
business, and your business becomes the Web.

A second observation is that Enterprise Por-
tals, by being modeled on the best-practices of
“dot com” companies, pave the way to under-
standing the four broad solution components in
running an Internet-centric business: rich con-
tent, e-commerce, customer interaction manage-
ment and collaboration. All successful portals
center around a rich-content application infra-
structure, including models for dynamic pub-
lishing, workflow, roles-based security models
and content asset management. Likewise, they
tie in commerce systems, including Web trans-
action management infrastructure, as well as
common systems for merchandise management
and order processing. Finally, they bridge these
components with applications that enhance
end-user and customer experience, such as per-
sonalization, user forums and collaboration
tools for document management, threaded dis-
cussions and managing projects over the Web.

The third key observation is that Enterprise
Portals represent the technology and business
best-practices in the Web environment. They
demonstrate that there are well-observed user
interface models, known systems and develop-
ment architectures, and – most important –
Web-native business and organization models.
This shift toward best-practices–based
approaches is critical as mainstream companies
look to scale their Web efforts to enterprise-
wide levels.

Conclusion
Enterprise Portals give us a model for our

businesses. At Allaire it’s driving us to build a
comprehensive platform that spans visual tools,
application servers and packaged systems for
building and managing an Enterprise Portal. For
corporate customers it provides a model and
call to arms to think about their business and
technology strategy in the Internet age. For solu-
tion companies it should drive new solutions
based on best-practices in Enterprise Portals.

In any case, we have a new mantra, a new
buzzword and, finally, a way to think about how
these complex technology and business issues
tie together in a cohesive manner, driving forward
the next generation of the Internet economy.

About the Author
Jeremy Allaire is a cofounder and vice president of
technology strategy at Allaire. He helps determine the
company’s future product direction and is responsible for
establishing key strategic partnerships within the Internet
industry. Jeremy has been a regular author and analyst on
Internet technologies for the past seven years, and he
holds degrees in both political science and philosophy
from Macalester College.

Building Enterprise Portals
Finally, a way to think about how complex technology and business tie together cohesively

by Jeremy Allaire

jeremy@allaire.com

I M H O

117JUNE 1999

Elixir
See JDJ Special Offer at:

http://www.sys-con.com/java/specialsoftheweek.html

118 JUNE 1999

Object

www.objectspace

See JDJ Spe
http://www.sys-con.com/ja

119JUNE 1999

tSpace

.com/go/universal

ecial Offer at:
ava/specialsoftheweek.html

120 JUNE 1999

JProbe
www.klgroup.com/culprits

See JDJ Special Offer at:
http://www.sys-con.com/java/specialsoftheweek.html

